Chapter 2: Measurement and Data

Ming Li

Department of Computer Science and Technology
Nanjing University
Data mining: at a glance

The real world

Knowledge

Data mining

Representation

Data

?
What is data?

Data are collected by mapping entities in the domain of interest to symbolic representation by means of some measurement procedure, which associates the value of a variable with a given property of an entity.

- Symbolic representation
- Measurement should reflect the given property.

Data entities in the symbolic space should reflect the true relationship of the objects in the real-world.
Are we mining qualified data?

Since we have no control over the data collection process, we have to be aware of the quality of the data we are mining

- Are the measurement procedures appropriate?
- If data transformation is applied, is it appropriate?
- Are the relationships between objects expressed?
- How to describe data quality?
Various data representations

- “Flatted” data
 - Data matrix or table. (attribute, value)

- Temporal and spatial data
 - (locations, value)

- Text
 - bag-of-words, n-grams, …

- Images and video
 - Color + texture + …, visual words, …

- Structured data
 - Graph, tree, …
An simple example

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age</th>
<th>Weight</th>
<th>LoveShopping?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>24</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>43</td>
<td>53</td>
<td>3</td>
</tr>
</tbody>
</table>

- Gender = 1, male; Gender = 0, female
- LoveShopping = 5, extremely love;
 LoveShopping = 3, love;
 LoveShopping = 1, don’t love it at all
Types of attribute scales (I)

- Nominal scale

The values of the attribute are only “Labels”, which is used to distinguish each other.

- Finite number of values
- No order information
- No algebraic operation can be conducted

E.g., \{1, 2, 3\} \sim \{\text{Red, Green, Blue}\} \sim \{\text{Milk, Bread, Coffee}\}
Types of attribute scales (II)

- Ordinal scale

The values of the attribute is to indicate certain ordering relationship resided in the attribute.

- Order is more important than value!

- No algebraic operation can be conducted except those related to sorting.

e.g., \{1, 2, 3\} ~ \{So-So, Good, Excellent\}

~ \{Irrelevant, Partially relevant, Relevant\}
Types of attribute scales (III)

• Numerical scale

The values of the attribute is to indicate the quantity of some predefined unit.

• There should be a basic unit, which can be transformed to another one.

• The value is how many copies of the basic unit

• Some algebraic operation can be conducted w.r.t the meaning of the attribute

 e.g., 4 km = 4 * 1km

 4 km is twice as longer as 2 km
Types of attribute scales (IV)

- Numerical scale
 - Ratio scale
 One type of numerical scale with fixed origin
 e.g., Kelvin temperature: 0K = -273.15°C
 - Interval scale
 One type of numerical scale with arbitrary origin
 e.g., Celsius temperature, Fahrenheit temperature
Why talk about attribute types?

We have to make sure that:

- The underlying meanings (relationships) have been properly encoded.

 The relationships between the entities in the empirical system being studied should correspond to relationships between number in the numerical system

- Choose appropriate operation for different types of attribute, although the numerical (symbolic) representation appears to be similar.

 e.g., pain level : {1,2,6}, {3,4,5}
The data transformation

Raw data are sometimes transformed in order to:

- Adjust the skewed data to meet the requirement of some methods to be applied on these data
- To relieve the burden of the subsequent data mining algorithms
- Explore and visualize the data well.
Legitimate transformation of different types of attribute

- **Nominal scale:**

 One-to-one mappings (=)
 e.g., $1 \rightarrow 4$

- **Ordinal scale:**

 Monotonic increasing (<)
 e.g., $\{1, 2, 3\} \rightarrow \{2, 6, 10\}$

- **Ratio scale:**

 Multiplication (*)
 e.g., $2 \rightarrow 20$

- **Interval scale:**

 Affine (*, +)
 e.g., $2 \rightarrow 21$
Some basic transformations (I)

Normalization is to scale the (numerical) attribute values to some specified range

• Min-Max Normalization:

\[v_{A'} = \frac{v_A - \min(A)}{\max(A) - \min(A)} (\max(A') - \min(A')) + \min(A') \]

• z-score normalization:

\[v_{A'} = \frac{v_A - \mu_A}{\sigma_A} \]

• Decimal scaling normalization:

\[v_{A'} = \frac{v_A}{10^j} \text{ where } j \text{ is the smallest integer such that } \max(|v'_{A}|) < 1 \]
Some basic transformations (II)

Discretization: dividing values of numerical attributes into intervals and use the interval to replace the original value

- **Entropy-based discretization:**

 Entropy of the sample S: $E(S) = - \sum_i p_i \log(p_i)$

 Entropy of the sample S if split by boundary b: $I(S, b) = \frac{|S_1|}{|S|} E(S_1) + \frac{|S_2|}{|S|} E(S_2)$

 Criterion for split: $Gain(S, b) = E(S) - I(S, b) > \theta$

- **Discretization by natural partitioning**

 The 3-4-5 rule: For the most significant digit, if it covers $\{3, 6, 7, 9\}$ distinct values then divide it into 3 equi-width interval; if it covers $\{2, 4, 8\}$ distinct values then divide it into 4 equi-width interval; if it covers $\{1, 5, 10\}$ then divide it into 5 equi-width interval
Similarity: relationship between objects

• Similarity is important:
 – Represent the internal relationship between data objects.
 – It is essential to many data mining algorithms

• The similarities computed from data items should reflect the relationship between objects

• Why care about similarity?
 – Find appropriate similarity measure for certain data representation
 – Help to evaluate the quality of data representation
Distance measures

• Distance measure can be used to characterize the concept of “similarity”

• **Distance or Metric** should satisfy

 – **Non-negativity:** \(d(i, j) \geq 0 \) and \(d(i, j) = 0 \) iff \(i = j \)

 – **Symmetry:** \(d(i, j) = d(j, i) \) for all \(i, j \)

 – **Triangle inequality:** \(d(i, j) \leq d(i, k) + d(k, j) \) for all \(i, j \) and \(k \)
Widely-used distance (I)

Minkowski distance:

\[d(x_1, x_2) = \left(\sum_{k=1}^{d} (x_1(k) - x_2(k))^p \right)^{\frac{1}{p}} \]

where \(x_1 \) and \(x_2 \) are 2 vectors in \(d \)-dimensional space

- Two special cases:
 - Euclidean distance (\(p = 2 \))
 \[d(x_1, x_2) = \sqrt{\sum_{k=1}^{d} (x_1(k) - x_2(k))^2} \]
 - Manhattan distance (\(p = 1 \))
 \[d(x_1, x_2) = \sum_{k=1}^{d} |x_1(k) - x_2(k)| \]

- Commensurability is assumed and normalization is usually required.
Widely-used distance (II)

Weighted Minkowski distance:

\[d(x_1, x_2) = \left(\sum_{k=1}^{d} w_k (x_1(k) - x_2(k))^p \right)^{\frac{1}{p}} \]

Reflects the relative importance of each attribute

In both weighted and unweighted Minkowski distance, each attribute contribute independently to the measure of distance

Mahalanobis distance:

\[d(x_1, x_2) = \left((x_1 - x_2)^\top \Sigma^{-1} (x_1 - x_2) \right)^{\frac{1}{2}} \]

The covariance matrix

Mahalanobis distance standardizes data not only in the direction of each attributes but also based on the covariance between attributes
Widely-used distance (III)

- **Distance for binary data:**

 - **Hamming distance:** number of bits that are different

 e.g., 01010 01001 Dist = 2

 - **Matching coefficient for similarity measurement**

 \[
 Sim = \frac{n_{1,1} + n_{0,0}}{n_{1,1} + n_{0,0} + n_{1,0} + n_{0,1}}
 \]

 - **Jaccard coefficient:** *(matches on (0,0) is not important)*

 \[
 J = \frac{n_{1,1}}{n_{1,1} + n_{1,0} + n_{0,1}}
 \]

 - **Dice coefficient:**

 \[
 D = \frac{2n_{1,1}}{2n_{1,1} + n_{1,0} + n_{0,1}}
 \]
Measuring similarity for other type

- **Nominal attributes**
 - Split it into n different binary attribute
 - Applied VDM (value difference metric)

$$vdm_a(x, y) = \sum_{c=1}^{C} \left| \frac{N_{a,x,c}}{N_{a,x}} - \frac{N_{a,y,c}}{N_{a,y}} \right|^q$$

[Wilson & Martines, JAIR’97]

- **Complex structures**
 - For distribution: KL divergence, cross entropy, …
 - For trees, graphs: defining graph kernels, …
Learning distance metric from data

\[d(x, y) = d_A(x, y) = \|x - y\|_A = \sqrt{(x - y)^T A (x - y)}. \]

\[
\begin{align*}
\min_A & \quad \sum_{(x_i, x_j) \in S} \|x_i - x_j\|^2_A \\
\text{s.t.} & \quad \sum_{(x_i, x_j) \in D} \|x_i - x_j\|_A \geq 1, \\
& \quad A \succeq 0.
\end{align*}
\]

I don’t know how to measure distance, but I know which ones should be close to each other

We can learn the distance relationship from data

Reprinted from [Xing et al., NIPS02]
Data quality

• Why care about the data quality?
 – Data mining process has no control over the data collection process
 – We don’t want the discovered pattern to reflect the distorted properties of the data set rather than the ground-truth.

• How to characterize data quality?
 – Data quality for individual attribute
 – Data quality of the entire data set
Data quality of measure

- **Precise (reliable)**
 - A precise measurement procedure is one that has *small variability*
 - often measured by its *variance*
 - can be improved as the sample size increases

- **Accurate**
 - An accurate measurement procedure not only possesses *small variability*, but also yields results *close to* what we think of as the *true value*.
 - measured by both *bias* and *variance*

- **Valid**
 - A valid measurement procedure measures what it is supposed to measure.
Bias vs. Variance

The value

times of sample

True value

bias

variance

times of sample
The accurate measure

The value

times of sample

True value
Data quality for entire data set

A high quality data set should lead to an accurate estimate of parameters

• Low variance

 Can be achieved by increasing sample size

• Low bias

 Closely related to the sampling process

 • Convenience sample: may distort the sample distribution

 • Population drift: collected data become useless quickly.
Let’s move to Chapter 3