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Abstract
The Gaussian process latent variable model (GPLVM)
is an unsupervised probabilistic model for nonlinear di-
mensionality reduction. A supervised extension, called
discriminative GPLVM (DGPLVM), incorporates su-
pervisory information into GPLVM to enhance the clas-
sification performance. However, its limitation of the
latent space dimensionality to at most C − 1 (C is
the number of classes) leads to unsatisfactorily perfor-
mance when the intrinsic dimensionality of the applica-
tion is higher than C − 1. In this paper, we propose a
novel supervised extension of GPLVM, called Gaussian
process latent random field (GPLRF), by enforcing the
latent variables to be a Gaussian Markov random field
with respect to a graph constructed from the supervisory
information. In GPLRF, the dimensionality of the latent
space is no longer restricted to at most C − 1. This
makes GPLRF much more flexible than DGPLVM in
applications. Experiments conducted on both synthetic
and real-world data sets demonstrate that GPLRF per-
forms comparably with DGPLVM and other state-of-
the-art methods on data sets with intrinsic dimensional-
ity at most C − 1, and dramatically outperforms DG-
PLVM on data sets when the intrinsic dimensionality
exceeds C − 1.

Introduction
In many artificial intelligence applications, one often has
to deal with high-dimensional data. Such data require di-
mensionality reduction to reveal the low-dimensional latent
structure of the data so that the underlying tasks, such as
visualization, classification and clustering, can benefit from
it. Many dimensionality reduction methods have been pro-
posed over the past few decades. Nevertheless, classical lin-
ear dimensionality reduction methods such as principal com-
ponent analysis (PCA) (Joliffe 1986) and multidimensional
scaling (MDS) (Cox and Cox 2001) remain to be popular
choices due to their simplicity and efficiency. However, they
fail to discover nonlinear latent structure of the data in more
complex data sets. Starting from about a decade ago, a num-
ber of nonlinear manifold learning methods such as isomet-
ric feature mapping (Isomap) (Tenenbaum, Silva, and Lang-
ford 2000) and locally linear embedding (LLE) (Roweis and
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Saul 2000) have been proposed. They can discover the low-
dimensional manifold structure of the data embedded in a
high-dimensional space. However, under situations with
relatively sparse or noisy data sets, it was found that these
methods do not perform well (Geiger, Urtasun, and Darrell
2009).

The Gaussian process latent variable model (GPLVM)
(Lawrence 2005) is a fully probabilistic, nonlinear latent
variable model based on Gaussian processes (Rasmussen
and Williams 2006). GPLVM can learn a nonlinear map-
ping from the latent space to the observation space. It has
achieved very promising performance in many real-world
applications, especially for situations with only a small num-
ber of training examples, i.e., sparse data sets. As pointed
out by Lawrence and Quiñonero-Candela (2006), GPLVM
can preserve the dissimilarity between points, which means
that the points will be far apart in the latent space if they are
far apart in the observation space. However, GPLVM can-
not preserve the similarity between points, i.e., the points
that are close in the observation space are not necessarily
close in the latent space. Typically, the points that are close
in the observation space are expected to belong to the same
class. Consequently, in GPLVM, there is no guarantee that
data points from the same class are close in the latent space,
which makes the learned latent representation not necessar-
ily good for discriminative applications.

In many applications, we often have some supervisory in-
formation such as class labels though the information may
be rather limited. However, GPLVM is unsupervised in na-
ture. If we can explicitly incorporate the supervisory infor-
mation into the learning procedure of GPLVM to make the
points from the same class close in the latent space, we can
obtain a more discriminative latent representation. To the
best of our knowledge, only one work, called discrimina-
tive GPLVM (DGPLVM) (Urtasun and Darrell 2007), has
integrated supervisory information into the GPLVM frame-
work. However, since DGPLVM is based on the linear dis-
criminant analysis (LDA) (Fukunnaga 1991) or generalized
discriminant analysis (GDA) (Baudat and Anouar 2000) cri-
terion, the dimensionality of the learned latent space in
DGPLVM is restricted to at mostC−1, whereC is the num-
ber of classes. For applications with intrinsic dimensionality
equal to or higher thanC, DGPLVM might not be able to de-
liver satisfactory performance. This will be verified by the
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experiments reported later in this paper.
In this paper, we propose a novel supervised GPLVM

method, called Gaussian process latent random field
(GPLRF), by enforcing the latent variables to be a Gaus-
sian Markov random field (GMRF) (Rue and Held 2005)
with respect to (w.r.t.) a graph constructed from the supervi-
sory information. Some promising properties of GPLRF are
highlighted below:

• GPLRF is nonlinear and hence can deal with complex
data sets which linear methods, such as PCA and MDS,
cannot handle.

• Compared with GPLVM, GPLRF can learn a more dis-
criminative latent representation in which data points of
the same class are clustered together and those of differ-
ent classes form different clusters.

• The dimensionality of the latent space is no longer re-
stricted to at most C − 1, making GPLRF more flexible
than DGPLVM in applications.

• GPLRF achieves performance at least comparable with
DGPLVM and other state-of-the-art methods on data sets
with intrinsic dimensionality at most C − 1, and dramati-
cally outperforms DGPLVM on data sets when the intrin-
sic dimensionality exceeds C − 1.

Gaussian Process Latent Variable Model
Given a set of N training examples represented as a matrix
Y = [y1,y2, . . . ,yN ]T , where yi ∈ Rd. Let the matrix
X = [x1,x2, . . . ,xN ]T , where xi ∈ Rq with q < d, denote
their corresponding positions in the latent space. In the con-
text of latent variable models, we often call Y the observed
data and X the latent representation (or latent variables) of
Y. GPLVM relates each high-dimensional observation yi
with its corresponding latent position xi using a Gaussian
process mapping from the latent space to the observation
space. Given a covariance function k(xi,xj) for the Gaus-
sian process, the likelihood of the observed data given the
latent positions is

p(Y |X) =
1√

(2π)Nd|K|d
exp

(
−1

2
tr(K−1YYT )

)
, (1)

where K is the kernel matrix with elements Kij =
k(xi,xj), and tr(·) denotes the trace of a matrix. We use
a kernel defined as follows:

k(xi,xj) = θ1 exp(−θ2
2
‖xi − xj‖2) + θ3 +

δij
θ4
, (2)

where δij is the Kronecker delta function and θ =
{θ1, θ2, θ3, θ4} are the kernel parameters. Maximizing the
likelihood is equivalent to minimizing

Lr =
d

2
ln |K|+ 1

2
tr(K−1YYT ) +

Nd

2
ln(2π). (3)

The gradients of (3) w.r.t. the latent variables can be com-
puted through combining

∂Lr
∂K

=
d

2
K−1 − 1

2
K−1YYTK−1 (4)

with ∂K
∂xij

via the chain rule, where xij is the jth dimension
of xi. Based on (3) and (4), a nonlinear optimizer such as
scaled conjugate gradient (SCG) (Møler 1993) can be used
to learn the latent variables. The gradients of (3) with re-
spect to the parameters of the kernel function in (2) can also
be computed and used to jointly optimize X and the kernel
parameters θ.

Our Model
In this section, we introduce in detail our proposed model,
GPLRF, including its formulation, learning algorithm and
out-of-sample prediction. GPLRF is a supervised extension
of GPLVM based on a GMRF (Rue and Held 2005).

Gaussian Process Latent Random Field
The basic idea of GPLRF is to enforce the latent variables
X to be a GMRF (Rue and Held 2005) w.r.t. a graph con-
structed from the supervisory information. Based on the
constructed GMRF, we get a prior for X and then apply max-
imum a posteriori (MAP) estimation to learn X.

GMRF Construction We define an undirected graph G =
(V, E) with the node set V = {V1, V2, · · · , VN} and Vi
corresponds to a training example yi (or xi), and E =
{(Vi, Vj)| i 6= j,yi and yj belong to the same class} is the
edge set. If we associate each edge with a weight 1, we can
get a weight matrix W with its entries defined as follows:

Wij =
{

1 if yi and yj , i 6= j, belong to the same class
0 otherwise.

Hence, we can find that Wij = 1 if and only if there exists
an edge between nodes Vi and Vj for any i 6= j.

We can see that the graph G is constructed from the la-
bel (supervisory) information. If we associate each node
with a random variable, we can get a Markov random field
(MRF) (Rue and Held 2005) w.r.t. the graph G. Here, we
associate this constructed graph G with the random vector
X∗k = (X1k,X2k, · · · ,XNk)T (for any k = 1, 2, . . . , q).

Based on the weight matrix W, we can compute the graph
Laplacian matrix (Chung 1997) L as L = D −W, where
D is a diagonal matrix with Dii =

∑
j Wij . With L, we

define a prior distribution on the latent variables X as:

p(X) =
q∏

k=1

p(X∗k),

and

p(X∗k) =
1
Z

exp
[
− α

2
(XT
∗kLX∗k)

]
, (5)

where Z is a normalization constant and α > 0 is a scaling
parameter. Then we have
Theorem 1 X∗k is a Gaussian Markov random field
(GMRF) w.r.t. the graph G.
Proof: According to the property of GMRF (Rue and Held
2005), it suffices to prove that the missing edges in G corre-
spond to the zero entries in the precision matrix (i.e., inverse
covariance matrix). Because in (5) the precision matrix is L,
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it is easy to check that Lij = 0 if and only if Wij = 0 for
all i 6= j. �

Hence, we can say that p(X∗k) is a meaningful prior for
X∗k because its underlying graph G effectively reflects the
conditional independence relationship among the random
variables. More specifically, on one perspective, from the
definition of W, Wij = 0 means that point i and point j are
from different classes. On the other perspective, from the
semantics implied by the MRF, Wij = 0 means that Xik is
independent of Xjk given the other variables. Because it is
reasonable to make the latent representations of two points
from different classes independent, these two perspectives
are coherent.

Furthermore, if we compute

p(X) =
q∏

k=1

p(X∗k) =
1
Zq

exp
[
− α

2
tr(XTLX)

]
, (6)

we can also understand the effectiveness of the prior in (6).
To see this, let us rewrite the term tr(XTLX) as follows:

tr(XTLX) =
1
2

q∑
k=1

[ N∑
i=1

N∑
j=1

Wij(Xik −Xjk)2
]

=
1
2

N∑
i=1

N∑
j=1

[
Wij

q∑
k=1

(Xik −Xjk)2
]

=
1
2

N∑
i=1

N∑
j=1

Wij‖xi − xj‖2, (7)

where ‖xi − xj‖ is the Euclidean distance between xi and
xj . We can see that tr(XTLX) actually reflects the sum of
the distances between points from the same class. The closer
the points from the same class are, the smaller is the term
tr(XTLX), and consequently the higher is p(X). Hence,
the latent representation which makes the data points from
the same class closer will be given higher probability. This
is exactly what we need to learn – a discriminative latent
space.

Model Formulation of GPLRF With the prior in (6) and
the likelihood in (1), we can obtain the posterior distribution

p(X |Y) ∝ p(Y |X)p(X). (8)
If we use the MAP strategy to estimate X, the supervi-

sory information in p(X) will be seamlessly integrated into
the model. We call this model Gaussian process latent ran-
dom field (GPLRF) because p(Y |X) corresponds to Gaus-
sian processes and the prior p(X) for the latent variables is
a Gaussian Markov random field w.r.t. a graph constructed
from the supervisory information.

Then the MAP estimate of X can be obtained by mini-
mizing the following objective function:

Ls =
d

2
ln |K|+ 1

2
tr(K−1YYT ) +

α

2
tr(XTLX). (9)

To minimize Ls, we can first compute the gradient of (9)
∂Ls
∂X

=
∂Lr
∂X

+ αLX,

and then apply the SCG method (Møler 1993). This proce-
dure is similar to that for GPLVM.

Discussions The objective function in (9) can be inter-
preted as a regularized version of GPLVM, where the reg-
ularizer is a nonlinear variant of the supervised locality pre-
serving projection (SLPP) model (Zheng et al. 2007). When
α → +∞, (9) has a closed-form solution and is equiva-
lent to a variant of supervised kernel locality preserving pro-
jection (SKLPP) model (Zheng et al. 2007) or a variant of
Laplacian eigenmap (Belkin and Niyogi 2001).

Although the objective function in (9) is only a simple
combination of two components, this combination is very
effective because the two components are intrinsically com-
plementary to each other.

Although the Laplacian matrix L in this paper is con-
structed from the supervisory information, it may also be
constructed based on the similarity between the observed
data Y (often called a similarity graph), which is similar
to the Laplacian matrix for Laplacian eigenmap. Another
possible extension is that we may combine both supervisory
information and a similarity graph to get a semi-supervised
version of GPLRF. It is worth noting that all these extensions
can be integrated into the GPLRF framework easily. Due to
space limitation, these extensions will be left to our future
pursuit.

Out-of-Sample Prediction
For a new test point yt, we exploit the back-constrained
strategy in (Lawrence and Quiñonero-Candela 2006) and
(Urtasun and Darrell 2007) to estimate its low-dimensional
representation xt. More specifically, we minimize (9) with
the constraints

xtj = gj(yt),

where xtj is the jth dimension of xt and gj is a function
of the input points. In particular, to get a smooth inverse
mapping, we use an RBF kernel for the back-constraint
in each dimension gj(yt) =

∑N
m=1 βjmk(yt,ym), where

{βjm}(m = 1, 2, . . . , N ; j = 1, 2, . . . , q) are the parame-
ters to learn and the kernel function is k(yn,ym) = exp

(
−

γ
2 ‖yn − ym‖2

)
, with γ being the inverse width parame-

ter. The latent position of a test point can be computed
directly by evaluating the inverse mapping learned by the
back-constraint at the test point xtj = gj(yt).

Experiments
To demonstrate the effectiveness of GPLRF, we compare
it with some related methods on both synthetic and real-
world data sets. These baseline methods include: 1-nearest
neighbor (1NN) classifier in the original space, PCA, LDA,
LPP (He and Niyogi 2003), SLPP (Zheng et al. 2007)
and their kernel counterparts, GPLVM, DGPLVM (Urta-
sun and Darrell 2007), LL-GPLVM (Urtasun et al. 2008),
rankGPLVM (Geiger, Urtasun, and Darrell 2009), and
tSNEGPLVM (van der Maaten 2009). Among them, PCA
and LPP are unsupervised, LDA and SLPP are supervised,
LPP and SLPP account for preserving similarity between
points, PCA, LDA, LPP and SLPP are linear dimensional-
ity reduction methods, and their kernel counterparts and all
GPLVM based methods are nonlinear methods.
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(a) GPLVM for training data (b) DGPLVM for training data (c) GPLRF for training data

(d) GPLVM for test data (e) DGPLVM for test data (f) GPLRF for test data

Figure 1: 2D latent spaces learned by GPLVM, DGPLVM and GPLRF on the USPS data set.

We use both the visualization and classification settings
to evaluate all these methods. For classification, we first
use these methods to perform dimensionality reduction to
get the lower-dimensional representation (or latent represen-
tation in the case of latent variable models), then a 1NN
classifier is employed to predict the labels of the test data
in the latent space. For all methods based on GPLVM,
testing is repeated with different parameter values: α ∈
{10−5, 10−4, . . . , 104, 105} and γ ∈ {0.001, 0.01, 0.1}.
The settings which result in minimum mean errors over 20
random partitions are used. For the other methods com-
pared, we also choose the best parameter settings over 20
random partitions and report the best classification results.

Three data sets are used in our experiments: the USPS
handwritten digit data set1, the Oil data set2, and the CMU
motion capture (CMU mocap) data set3. The USPS data set
contains 9298 handwritten digits from 10 classes. The size
of each digit image is 16× 16 pixels (so the dimensionality
of the data space is 256). In our experiment, we use nor-
malized digit images with pixel values in [0, 1]. For all the
dimensionality reduction methods, we first project the data
onto a linear subspace by performing PCA on the training
data with 99% of the variance retained and then use each
method for dimensionality reduction. Other than PCA, no
other preprocessing is applied. The Oil data set is a syn-
thetic data set. It contains 1000 examples grouped into three
classes, with dimensionality 12. Nevertheless, its intrinsic
dimensionality is only two4. The CMU mocap data set in-
cludes three categories, namely, jumping, running and walk-
ing. We choose 49 video sequences from four subjects. For
each sequence, the features are generated using Lawrence’s

1http://www-stat-class.stanford.edu/∼tibs/ElemStatLearn/data.html
2http://is6.cs.man.ac.uk/∼neill/datasets/
3http://mocap.cs.cmu.edu/
4http://www.ncrg.aston.ac.uk/GTM/3PhaseData.html

method5, with dimensionality 93.

Visualization
We compare our model with GPLVM and DGPLVM on the
visualization of the USPS data set in a 2-dimensional (2D)
latent space. The training and test sets are randomly se-
lected from the whole data set, with 50 examples per class
for training and the rest for testing. For all three methods,
PCA is used for initialization. Figure 1 shows the learned
2D latent spaces by using GPLVM, DGPLVM and GPLRF.
As we can see, for the training data, GPLRF learns a 2D
latent space in which all 50 data points of each class are
almost mapped to the same point, but the latent representa-
tions learned by GPLVM and DGPLVM are more scattered
with significant overlapping between classes. For the test
data, the regions for different digit classes in the latent space
can be distinguished more easily using GPLRF but there is
more significant overlapping when GPLVM or DGPLVM is
used. Hence, we can say that the learned space of GPLRF is
more discriminative than those of GPLVM and DGPLVM,
which conforms to the theoretical analysis of GPLRF.

Effect of Dimensionality
In this experiment, we assess the performance of GPLRF in
latent spaces of different dimensionality. Since DGPLVM is
derived from the LDA or GDA criterion, the dimensional-
ity of the DGPLVM latent space is at most C − 1, where C
is the number of classes. However, GPLRF has no such re-
striction and can learn latent spaces of dimensionality higher
than C − 1. Figure 2(a) and Figure 2(b) show the classifi-
cation errors on the Oil data set and the CMU mocap data
set, respectively. On the Oil data set, the best performance
of DGPLVM is achieved when the dimensionality of the la-
tent space is equal to C − 1. Although GPLRF can learn a

5http://is6.cs.man.ac.uk/∼neill/mocap/
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latent space of higher dimensionality, the performance can-
not be further improved by more than 1%. Besides, we can
see that DGPLVM and GPLRF achieve comparable perfor-
mance when the dimensionality of the latent space is set to
C − 1 (= 2), which is the true dimensionality of the data.
However, for the CMU mocap data set, the best performance
of GPLRF is achieved when the dimensionality is higher
than C − 1, which means that the intrinsic dimensionality
of this data set might be higher than C − 1. For this case,
DGPLVM cannot achieve satisfactory results due to the di-
mensionality restriction. Hence, by comparing the results in
Figure 2(a) and Figure 2(b), we can conclude that GPLRF
can model more complex data sets than DGPLVM.

(a) (b)

Figure 2: Mean errors obtained by DGPLVM and GPLRF in
latent spaces of different dimensionality on the Oil data set
and the CMU mocap data set.

Classification on the USPS Data Set
In this experiment, we compare our model with 12 other re-
lated methods on the USPS data set. For all methods based
on GPLVM, we use PCA for initialization. For compari-
son, the dimensionality of the latent space is set to 9. Mean
classification errors and their standard deviations are shown
in Table 1, where the best results are shown in bold. We
can find that GPLRF achieves the best performance consis-
tently. Although GDA performs well and can obtain mean
errors close to GPLRF, paired t-tests still support that, in
most cases, GPLRF is significantly better than GDA.

Classification on the Oil Data Set
In this experiment, all the GPLVM based methods are initial-
ized with SLPP. The dimensionality of the latent space is set
to 2. Mean classification errors and their standard deviations
are shown in Figure 3. Paired t-tests show that, in most cases
(with p-value less than 0.1), GPLRF is significantly better
than the other methods. Even in cases that GPLRF is not the
best, there is no significant difference between GPLRF and
the best one. From Figure 2(a), we can find that this data set
might be relatively simple. Hence, DGPLVM can achieve
performance comparable with GPLRF under some settings
on this data set.

Classification on the CMU Mocap Data Set
To evaluate the performance of GPLRF when the input di-
mensionality is higher than the number of training examples,
we carry out an experiment on the CMU mocap data set. We

Figure 3: Mean classification errors and standard devia-
tions for nine methods on the Oil data set. The bars in
each group represent the classification results in the orig-
inal space, the learned latent space using SLPP, SKLPP,
GPLVM, LL-GPLVM, rankGPLVM, tSNEGPLVM, DG-
PLVM and GPLRF, respectively.

use PCA to initialize the latent variables of both DGPLVM
and GPLRF. Based on Figure 2(b), we set the dimensionality
of DGPLVM to 2 and that of GPLRF to 5. The mean classifi-
cation errors and standard deviations are shown in Figure 4.
We can see that GPLRF consistently outperforms DGPLVM
and 1NN in the original space. Paired t-tests also support
this conclusion.

Figure 4: Mean classification errors and standard deviations
for three methods on the CMU mocap data set.

Conclusion
In this paper, we have proposed a novel supervised exten-
sion of GPLVM, called GPLRF, for nonlinear dimension-
ality reduction. GPLRF can learn a discriminative latent
representation which is beneficial for classification. Exten-
sive experiments on synthetic data and diverse applications
demonstrate that GPLRF can achieve performance compa-
rable to other state-of-the-art methods, either linear or non-
linear, for simple data sets, and can dramatically outperform
other methods for complex data sets.
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Table 1: Mean classification errors and standard deviations obtained by different methods on the USPS data set. The first
row, ‘No transformation’, presents the 1NN classification results in the original space. The first four methods below ‘No
transformation’ are linear methods and the rest are nonlinear methods. The blank entry for ’rankGPLVM’ is due to out of
memory (2GB).

Method 10train 20train 30train 40train 50train

No transformation 0.1976 ± 0.0161 0.1463 ± 0.0069 0.1260 ± 0.0064 0.1107 ± 0.0056 0.0986 ± 0.0047
PCA 0.2497 ± 0.0154 0.2090 ± 0.0133 0.1849 ± 0.0122 0.1757 ± 0.0136 0.1631 ± 0.0054
LDA 0.2636 ± 0.0275 0.1937 ± 0.0103 0.1657 ± 0.0068 0.1520 ± 0.0093 0.1392 ± 0.0055
LPP 0.3433 ± 0.0356 0.2761 ± 0.0284 0.2470 ± 0.0154 0.2150 ± 0.0131 0.1929 ± 0.0125
SLPP 0.2448 ± 0.0204 0.2070 ± 0.0095 0.1792 ± 0.0067 0.1639 ± 0.0097 0.1498 ± 0.0063

KPCA 0.3515 ± 0.0260 0.2764 ± 0.0294 0.2490 ± 0.0179 0.2422 ± 0.0154 0.2204 ± 0.0115
GDA 0.1827 ± 0.0240 0.1455 ± 0.0205 0.0971 ± 0.0044 0.0921 ± 0.0070 0.0729 ± 0.0053
KLPP 0.5087 ± 0.0490 0.5024 ± 0.0414 0.4751 ± 0.0316 0.4645 ± 0.0257 0.4517 ± 0.0206
SKLPP 0.2155 ± 0.0402 0.1702 ± 0.0453 0.1450 ± 0.0440 0.1345 ± 0.0493 0.1059 ± 0.0374
GPLVM 0.2554 ± 0.0191 0.1940 ± 0.0090 0.1695 ± 0.0155 0.1422 ± 0.0070 0.1311 ± 0.0079
LL-GPLVM 0.2533 ± 0.0200 0.1908 ± 0.0158 0.1637 ± 0.0152 0.1393 ± 0.0094 0.1278 ± 0.0088
rankGPLVM 0.1930 ± 0.0146 0.1427 ± 0.0075 0.1186 ± 0.0067 0.1084 ± 0.0529 –
tSNEGPLVM 0.2399 ± 0.0138 0.1932 ± 0.0096 0.1673 ± 0.0157 0.1418 ± 0.0072 0.1303 ± 0.0084
DGPLVM 0.2491 ± 0.0230 0.1922 ± 0.0102 0.1692 ± 0.0155 0.1442 ± 0.0122 0.1303 ± 0.0081
GPLRF 0.1769 ± 0.0165 0.1129 ± 0.0113 0.0946 ± 0.0100 0.0809 ± 0.0085 0.0690 ± 0.0042

Acknowledgments
This research is partially supported by the NSFC Outstand-
ing Youth Fund (No. 60825301) and by General Research
Fund 621407 from the Research Grants Council of the Hong
Kong Special Administrative Region, China.

References
Baudat, G., and Anouar, F. 2000. Generalized discriminant analy-
sis using a kernel approach. Neural Computation 12:2385–2404.
Belkin, M., and Niyogi, P. 2001. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Advances in Neural
Information Processing Systems, 585–591.
Chung, F. 1997. Spectral Graph Theory. Number 92 in Regional
Conference Series in Mathematics. American Mathematical Soci-
ety.
Cox, T., and Cox, M. 2001. Multidimensional Scaling. Chapman
and Hall, Boca Raton.
Fukunnaga, K. 1991. Introduction to Statistical Pattern Recogni-
tion, second edition. Academic Press.
Geiger, A.; Urtasun, R.; and Darrell, T. 2009. Rank priors for
continuous nonlinear dimensionality reduction. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition,
880–887.
He, X., and Niyogi, P. 2003. Locality preserving projections. In
Advances in Neural Information Processing Systems.
Joliffe, I. 1986. Principal Component Analysis. Springer-Verlag.
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