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Abstract

One main concern towards kernel classifiers
is on their sensitivity to the choice of kernel
function or kernel matrix which characterizes
the similarity between instances. Many real-
world data, such as web pages and protein-
protein interaction data, are relational in na-
ture in the sense that different instances are
correlated (linked) with each other. The re-
lational information available in such data
often provides strong hints on the correla-
tion (or similarity) between instances. In this
paper, we propose a novel relational kernel
learning model based on latent Wishart pro-
cesses (LWP) to learn the kernel function for
relational data. This is done by seamlessly in-
tegrating the relational information and the
input attributes into the kernel learning pro-
cess. Through extensive experiments on real-
world applications, we demonstrate that our
LWP model can give very promising perfor-
mance in practice.

1 Introduction

Kernel methods, such as support vector machines
(SVM) and Gaussian processes (GP) (Rasmussen and
Williams, 2006), have been widely used in many ap-
plications giving very promising performance. In ker-
nel methods, the similarity between instances is rep-
resented by a kernel function defined over the input
attributes. In general, the choice of an appropriate
kernel function and its corresponding parameters is
difficult in practice. Poorly chosen kernel functions
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can impair the performance significantly. Hence, ker-
nel learning (Lanckriet et al., 2004; Zhang et al., 2006),
which tries to find a good kernel matrix for the train-
ing data, is very important for kernel-based classifier
design.

In many real-world applications, relationships or
“links” between (some) instances may also be avail-
able in the data in addition to the input attributes.
Data of this sort, referred to as relational data (Getoor
and Taskar, 2007), can be found in such diverse appli-
cation areas as web mining, social network analysis,
bioinformatics, marketing, and so on. In relational
data, the attributes of connected (linked) instances
are often correlated and the class label of one instance
may have an influence on that of a linked instance.
This means that the relationships (or links) between
instances are very informative for instance classifica-
tion (Getoor and Taskar, 2007), sometimes even much
more informative than input attributes. For exam-
ple, two hyperlinked web pages are very likely to be
related to the same topic, even when their attributes
may look quite different when represented as bags of
words. In biology, interacting proteins are more likely
to have the same biological function than those with-
out interaction. In marketing, knowing one’s shopping
habit will provide useful information about his/her
close friends’ shopping inclinations. Hence, in such
data, relational information often provides very strong
hints to refine the correlation (or similarity) between
instances. This motivates our work on relational ker-
nel learning (RKL), which refers to learning a kernel
matrix (or a kernel function) for relational data by
incorporating relational information into the learning
process.

Thanks to its promising potential in many applica-
tion areas, relational learning (Getoor and Taskar,
2007), which tries to model relational data, has be-
come a hot topic in the machine learning community.
Many methods have been proposed over the past few
years. For example, probabilistic relational models
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(PRM) (Getoor and Taskar, 2007), such as relational
Bayesian networks (RBN) (Getoor et al., 2002), rela-
tional Markov networks (RMN) (Taskar et al., 2002)
and relational dependency networks (RDN) (Neville
and Jensen, 2007), try to model the relational data
by adapting conventional graphical models for the re-
lational scenario. There are also some methods that
handle relational data in heuristic ways (Macskassy
and Provost, 2007). These methods are not based on
the kernel approach.

More recently, relational Gaussian process
(RGP) (Chu et al., 2007) and mixed graph Gaussian
process (XGP) (Silva et al., 2008) were proposed to
model relational data from a kernel point of view.
Both of them utilize relational information to learn
the covariance (or kernel) matrix for a Gaussian
process. Hence, RGP and XGP are relational kernel
learning methods and we will follow their path in this
paper.

We propose a novel model, called LWP hereafter,
based on latent Wishart processes to learn the kernel
for relational data by seamlessly integrating relational
information with input attributes. Several promising
properties of LWP are highlighted here:

• LWP adopts the kernel for input attributes to de-
fine the prior for the target kernel, and use the
link information to define the likelihood. Finally,
MAP estimation is applied to learn the target ker-
nel. Hence, LWP seamlessly integrates the two
views into a principled framework.

• To the best of our knowledge, LWP is the first
model that employs Wishart processes for rela-
tional learning.

• Unlike many other existing models, such as
XGP (Silva et al., 2008), which are only suitable
for the transductive setting, LWP is naturally ap-
plicable for inductive inference over unseen test
data.

• During the kernel learning phase, no label infor-
mation for the instances is needed, which makes
it easy to extend LWP for visualization and clus-
tering of relational data.

The rest of this paper is organized as follows. Sec-
tion 2 introduces some basic background for Wishart
processes. Section 3 presents our LWP model and Sec-
tion 4 compares it with some related works. Exper-
imental results are presented in Section 5 and then
finally Section 6 concludes the paper.

2 Wishart Processes

Definition 1 (Gupta and Nagar, 2000) An n×n ran-
dom symmetric positive definite matrix A is said to
have a Wishart distribution with parameters n, q,
and n × n scale matrix Σ � 0, written as A ∼
Wn(q,Σ), if its p.d.f. is given by

|A|(q−n−1)/2

2qn/2Γn(q/2)|Σ|q/2
exp

(
− 1

2
tr(Σ−1A)

)
, q ≥ n. (1)

Here Σ � 0 means that Σ is positive definite.

Assume that we are given an input space X =
{x1,x2, . . .}.

Definition 2 (Zhang et al., 2006) The kernel func-
tion {A(xi,xj);xi,xj ∈ X} is said to be a Wishart
process (WP) if for any n ∈ N and {x1, . . . ,xn} ⊆ X ,
the n×n random matrix A = [A(xi,xj)]ni,j=1 follows a
Wishart distribution.

For A : X × X → R, there exists a correspond-
ing mapping (say B) from the input space X to a
latent (feature) space (say F ⊂ Rq), i.e., a vector-
valued function B(x) = (B1(x), . . . , Bq(x))′ such that
A(xi,xj) = B(xi)′B(xj). Zhang et al. (2006) proved
that A(xi,xj) is a Wishart process if and only if the
Bj(x) (j = 1, . . . , q) are q mutually independent Gaus-
sian processes.

Although q is possibly infinite, we assume that it
is finite in this paper for simplicity. Denote A =
[A(xi,xj)]ni,j=1 (n×n) and B = [B(x1), . . . , B(xn)]′ =
[b1, . . . ,bn]′ (n×q). Then the bi are the latent vec-
tors, and A = BB′ is the linear kernel in the latent
space but is a nonlinear kernel w.r.t. the input space.

Let Σ⊗Iq denote the Kronecker product of Σ and
Iq (the q×q identity matrix). Using the notation
Nn,q(0,Σ⊗Iq) in (Gupta and Nagar, 2000, page 55)
for matrix-variate normal distributions, we have

Theorem 1 Let Σ be an n×n positive definite ma-
trix. Then A is distributed according to the Wishart
distribution Wn(q,Σ) if and only if B is distributed
according to the matrix-variate normal distribution
Nn,q(0,Σ⊗Iq).

Proof: (Sketch) If q ≥ n, the theorem can be proven
by combination of Theorem 3.2.2 and Theorem 3.3.3
in (Gupta and Nagar, 2000).

If q < n, A follows a singular Wishart distribu-
tion (Srivastava, 2003), and the corresponding B is
distributed according to the singular matrix-variate
normal distribution (Definition 2.4.1 in (Gupta and
Nagar, 2000)). The proof is similar to the case of
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q ≥ n. We omit the details here due to the page limit
constraint. �

Theorem 1 shows an interesting connection; namely,
the degree of freedom q in the Wishart process is the
dimensionality of the latent space F . Theorem 1 ex-
tends the results given in (Gupta and Nagar, 2000)
and (Zhang et al., 2006) where the condition q ≥ n
is required. Moreover, the asymptotic distribution of
q1/2(A − Σ) as q → ∞ is Nn,n(0, (In2 + C)(Σ⊗Σ)),
where C is the commutation matrix (Muirhead, 1982).

3 Methodology

One common representation format for relational data
is a graph, in which a node corresponds to an in-
stance and an edge corresponds to a pairwise rela-
tionship between the two connected nodes. Although
directed edges are common in some data sets, they
can be converted into undirected edges in many cases.
In this paper, we only focus on modelling undirected
edges which represent symmetric (or reciprocal) rela-
tionships. Furthermore, in the real world the rela-
tionship between two nodes can be either “positive”
or “negative”, which means that the attributes of the
connected nodes have positive or negative correlation,
respectively. Due to the page limit constraint, here
we only consider positive relationships, although it is
straightforward to extend our proposed model to neg-
ative relationships. The extension of our model for
directed graphs or hypergraphs with negative relation-
ships will be pursued in our future work.

Suppose we are given a set of data {(xi, yi, zik) : i, k =
1, . . . , n}, where xi = (xi1, . . . , xip)′ and yi are respec-
tively the input feature vector and the label for in-
stance i, and zik is a binary variable indicating the
existence of a relationship (link) between instances i
and k, namely,

zik =
{

1 if there exists a link between xi and xk

0 otherwise.

Rather than considering the design of a kernel clas-
sifier, we focus our attention on the learning of the
kernel function for any kernel classifier by utilizing the
relational information, i.e., relational kernel learning.

Unlike conventional kernel learning methods (Lanck-
riet et al., 2004; Zhang et al., 2006) which use the
class labels to learn the kernel matrix, the setting for
the relational kernel learning in LWP does not use any
instance label. LWP only uses the input feature vec-
tors and the binary variables {zik} to learn the kernel.
Thus, essence, LWP is unsupervised in nature.

3.1 Model

The available information for RKL includes both the
input attributes and the binary variables {zik}. The
goal of RKL is to learn a target kernel function
A(xi,xk) which takes both the input attributes and
the relational information into consideration. Let
aik = A(xi,xk). Then A = [aik]ni,k=1 will be a positive
semidefinite matrix. We now model A by a (singu-
lar) Wishart distribution Wn(q,Σ). This implies that
A(xi,xk) follows a Wishart process.

Let K(xi,xk) be a kernel function just defined on
the input attributes. For example, the linear kernel
K(xi,xk) = x′

ixk is such a kernel function. Similarly,
K = [K(xi,xk)]ni,k=1 is a positive semidefinite matrix.
If we set Σ = β(K + λIn) with β > 0 and λ being
typically a very small number to make Σ � 0, we have

A ∼ Wn(q, β(K + λI)). (2)

Consequently, the input attributes are successfully in-
tegrated into the target kernel function.

To incorporate the relational information for the learn-
ing of A(·, ·), we regard each zik as a Bernoulli vari-
able, which is determined by the latent variable aik via
a logistic link function sik. Given the aik, we further
assume that the zik are independent. Moreover, we as-
sume that the links are symmetric with no self loops,
i.e., zik = zki and zii = 0. Letting Z = [zik]ni,k=1, we
have

p(Z|A) =
n∏

i=1

n∏
k=i+1

szik

ik (1− sik)1−zik

with sik =
exp(aik/2)

1 + exp(aik/2)
. (3)

To this end, both the input attributes and the rela-
tional information are seamlessly integrated into the
same framework, in which the input attributes define
the scale matrix of the prior for the distribution of
the target kernel function and the relational informa-
tion defines the likelihood computed based on the tar-
get kernel function. Then, learning algorithms such
as maximum a posteriori (MAP) estimation can be
used to learn the latent variables aik. After learning
the model, the target kernel function A(xi,xk) will
take both the input attributes and the relational in-
formation into consideration. We can directly use this
new kernel function to implement kernel classification
methods such as SVM and GP-based classifiers. In our
experiments, we apply A(xi,xk) as a kernel function
for a GP-based classifier.

In this model, the Wishart process A(xi,xk) is used
to define latent variables {aik}n

i,k=1. We thus call this
model latent Wishart process (LWP) model.
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3.2 Learning

It is natural to consider the MAP estimate of A,
namely,

argmax
A

log
[
p(Z|A)p(A)

]
.

Theorem 1 shows that finding the MAP estimate of
A is equivalent to finding the MAP estimate of B. In
particular, we note that for the applications presented
in Section 5, small values of q, typically no larger than
50, are sufficient for delivering good performance. This
motivates us to alternatively find the MAP estimate
of B, which will dramatically reduce the computation
cost. Consequently, we attempt to maximize the fol-
lowing log posterior probability:

L(B) = log{p(Z|B)p(B)}
=

∑
i 6=k

log p(zik|bi,bk) + log p(B)

=
∑
i 6=k

[
zikb′

ibk/2− log(1 + exp(b′
ibk/2))

]
−1

2
tr

[ (K + λI)−1

β
BB′] + C

=
∑
i 6=k

[
zikb′

ibk/2− log(1 + exp(b′
ibk/2))

]
−1

2

∑
i,k

σikb′
ibk + C,

where [σik]ni,k=1 = (K+λI)−1

β and C is a constant in-
dependent of B. We employ a block quasi-Newton
method to solve the maximization of L(B) w.r.t.
B. The basic idea is to approximate the Hessian
matrix ∂2L

∂B∂B′ by using the block diagonal matrix

Block diag
(

∂2L
∂b1∂b′1

, . . . , ∂2L
∂bn∂b′n

)
.

The Fisher score vector and Hessian matrix of L w.r.t.
bi are given by

∂L

∂bi
=

∑
j 6=i

(zij − sij − σij)bj − σiibi

∂2L

∂bi∂b′
i

= −1
2

∑
j 6=i

sij(1−sij)bjb′
j − σiiIq , −Hi.

Given the initial values bi(0), the update equations for
the bi are

bi(t+1)=bi(t)+γ ·Hi(t)−1 ∂L

∂bi

∣∣∣∣
B=B(t)

, i = 1, . . . , n,

(4)
where γ is the step size. A strategy to make the ob-
jective function monotonically increase is to learn γ in
each update step, but to search for a suitable γ in each
update step might incur high computation cost. In our

experiment, we find that if γ is simply set to a value
less than 0.1, our algorithm works very well for all the
experiments. Although in this case the objective func-
tion does not necessarily increase monotonically, the
long-term trend of it is increasing. This makes our
algorithm not only very fast but also very accurate.

Note that this iterative procedure works in a paral-
lel manner. It may also work sequentially. However,
our experiments show that the parallel scheme is more
stable than the sequential scheme. As we have men-
tioned, the size of Hi is q×q with q being always a
small number in our experiments, so the iterative pro-
cedure is very efficient. In this paper, we adopt KPCA
(Schölkopf et al., 1998) to initialize the values bi(0).

3.3 Out-of-Sample Extension

It is easy for LWP to perform out-of-sample exten-
sion (or induction), which means that we can use the
learned LWP to predict the bi for new test data.

Let Z =
[

Z11 Z12

Z21 Z22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where Z11(Σ11) is an n1×n1 matrix and Z22(Σ22)
is an n2×n2 matrix. Suppose the n1 instances cor-
responding to Z11 and Σ11 are training data, and
Z22 and Σ22 correspond to new test data. Similarly,

we partition B =
[

B1

B2

]
, A =

[
A11 A12

A21 A22

]
=[

B1B′
1 B1B′

2

B2B′
1 B2B′

2

]
. Because B ∼ Nn,q(0, Σ⊗Iq), we

have B1 ∼ Nn1,q(0, Σ11⊗Iq) and

B2 |B1 ∼ Nn2,q

(
Σ21Σ−1

11 B1, Σ22·1 ⊗ Iq

)
, (5)

where Σ22·1 = Σ22 −Σ21Σ−1
11 Σ12.

For inductive inference, we first find the MAP es-
timate of B1 based on argmaxB1

log p(Z11|B1)p(B1)
and then adopt the conditional expectation (or condi-
tional mean) of B2 given B1 to estimate B2, which is
given by Σ21Σ−1

11 B1 based on (5).

Owing to the page limit, out-of-sample extension will
not be evaluated via experiments in this paper. We
will report the experiments in our future work.

4 Related Work

The methods that are most related to our LWP model
are RGP (Chu et al., 2007) and XGP (Silva et al.,
2008). Both RGP and XGP also try to learn the
covariance (kernel) matrix for Gaussian processes by
exploiting the relationships between instances. Un-
like LWP which is to learn multiple (q) GPs, RGP
and XGP only learn one GP. In fact, when q = 1, B
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(n×1) in LWP degenerates to a single Gaussian pro-
cess. Hence, our model can be regarded as a general-
ization of RGP and XGP. The key difference between
them is that LWP treats A = BB′ as the learned
kernel matrix, which can be further used to train all
kinds of kernel classifiers. In RGP and XGP, how-
ever, p(B|Z) is itself a prediction function with B be-
ing a vector of function values for all input points. The
learned kernel, which is the covariance matrix of the
posterior distribution p(B|Z), is (K−1 + Π−1)−1 in
RGP and (K + Π) in XGP, where Π is a kernel ma-
trix capturing the link information. Since there is no
closed-form solution for p(B|Z), RGP and XGP adopt
different approximation strategies to compute the pos-
terior covariance matrix.

Another related work is the stochastic relational model
in (Yu and Chu, 2008; Yu et al., 2006), where A is
modeled as a tensor GP rather than a WP. Since A in
(Yu and Chu, 2008; Yu et al., 2006) is not guaranteed
to be positive semi-definite, it cannot be regarded as a
kernel matrix. Furthermore, the focus of (Yu and Chu,
2008; Yu et al., 2006) is on linkage prediction rather
than instance classification as in our LWP model.

Our work has also been motivated by the latent space
approaches in social network analysis (Hoff et al.,
2002). Let d2

ij = ‖bi − bj‖2 be the squared distance
between bi and bj , and D = [d2

ij ] be the n×n dis-
tance matrix. Then − 1

2EDE = EAE where E is
an n×n centering matrix. This reveals a connection
between our model and the latent distance model in
(Hoff, 2008). In addition, we also note that in the la-
tent eigenmodel (Hoff, 2008) for symmetric relational
data, Hoff (2008) defined A = UΛU′ where U is an
orthogonal matrix and Λ is a diagonal matrix but its
diagonal elements can be negative. Thus, A does not
play the role of a kernel matrix.

5 Experiments

We compare our LWP method with several related
methods, such as the standard Gaussian process classi-
fier (GPC) (Rasmussen and Williams, 2006), RGP and
XGP, on three real-world data sets, WebKB (Craven
et al., 1998), Cora (McCallum et al., 2000) and politi-
cal books data set, which are also used in (Silva et al.,
2008). The centralized linear kernel K(xi,xj) = x′

ixj

(Chu et al., 2007) is used to define the covariance ma-
trix K in the Wishart distribution defined in (2) for all
these data sets. The λ in (2) is set to a small number
10−4. All the bi are initialized to the feature vec-
tors obtained by kernel principal component analysis
(KPCA) 1 (Schölkopf et al., 1998) based on K + λI.

1The KPCA in our paper is actually PCA, because for
text processing the linear kernel always outperforms other

Although our method can be applied under the induc-
tive setting, for fair comparison we run our method
under the transductive setting because both RGP and
XGP were only tested under this setting (Silva et al.,
2008).2 More specifically, for our LWP method, we
first perform kernel learning based on all the points,
including training and test points, and their links, but
without using any label information. Then, based on
the learned kernel, we learn a GP with the training
points only and evaluate the learned model on the
test points. Hence, the main difference between our
method and other methods is just in the kernel learn-
ing part.

5.1 Sensitivity to Parameters

There are four parameters in total which will affect
the training of LWP. They are the dimensionality of
the latent space q, the β in (2), the γ in (4), and the
number of iterations (T ) to optimize L(B). We find
that the performance is very stable by setting 1000 ≤
β ≤ 10000. Hence, in all the following experiments,
β = 1000.

We first study the effect of γ and T . Here we use
the Texas subset of the WebKB data set to illustrate
this. The description of this subset is given in Sec-
tion 5.3. We find that when γ ≤ 0.01, our algorithm
is very stable. The performance, measured in area
under the ROC curve (AUC), and the objective func-
tion against the change in T are illustrated in Fig-
ure 1, in which the X-axis denotes T , “AUC01” is the
performance with γ = 0.01, “AUC001” is the perfor-
mance with γ = 0.001, “obj01” is the objective func-
tion values with γ = 0.01 and “obj001” is the objective
function values with γ = 0.001. Note that the objec-
tive function values in the figure are transformed to
L(B)/105 + 4 for the convenience of demonstration.
We can see that the long-term trend of the objective
function is increasing, and the performance of our al-
gorithm is very stable. For γ = 0.01, 10 iterations are
enough to give good performance.

We also test the sensitivity of our method to the
change in q on the Texas subset and the political books
data set. Figure 2 shows the average AUC with stan-
dard deviation over 100 trials of our method when q is
set to different values. Note that we use KPCA to ini-
tialize the bis. Hence, KPCA actually refers to a GPC
with the kernel matrix computed based on the initial
values of bi, i.e., bi(0), in LWP. This means KPCA
corresponds to the case that the iteration number in

kernels. Calling it KPCA is just for the consistency of our
algorithm, because during the derivation of our algorithm
K can be any kind of kernel.

2In fact, XGP can only work under the transductive
setting.
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Figure 1: The performance (AUC) and the objective func-
tion against the change in the number of iterations.
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Figure 2: Performance of LWP against the change in de-
gree of freedom q in the Wishart process (i.e., dimension-
ality of the latent space).

LWP is set to 0. From Figure 2, we can see that LWP
is very robust to the change in q. Furthermore, by
comparing LWP with KPCA 3, it is not difficult to
see that the learning method in LWP is very effective.
Note that the performance of GPC on the Texas sub-
set is 0.799 ± 0.021, and that on the political books
data set is 0.92.

We can see that LWP is robust to parameter changes.
In all our following experiments, unless otherwise
stated, we just set β = 1000, γ = 0.01, T = 10, q = 20.

5.2 Visualization

The learned bi can be treated as the feature repre-
sentation in a latent space, which can be utilized for
data visualization. Here we use the Texas subset of the
WebKB data set to illustrate this. We use the whole
data set (827 examples with their links) without any
label information to perform kernel learning with our
LWP model. For the sake of visualization, q is set to 2.

3The comparison between LWP and KPCA is just used
to demonstrate that the good performance of LWP is not
from a good initial value but from the learning process.
We denote the initial values as KPCA just because we use
KPCA for initialization.
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(a) KPCA (b) LWP
Figure 3: Visualization of data points in the transformed
space by KPCA and in the latent space learned by LWP.
100 positive (red cross) and 100 negative (blue circle) ex-
amples are shown.

After learning, 100 positive and 100 negative examples
are randomly chosen for visualization. The results are
demonstrated in Figure 3, where KPCA refers to the
initial values of bi, i.e., bi(0). We can see that dif-
ferent classes are well separated in the learned latent
space by LWP, although the initialization by KPCA is
very poor. Good classification performance can be ex-
pected when the examples are classified in this latent
space, which will be verified by our subsequent exper-
iment. Furthermore, because no label information is
used to learn this feature representation, good cluster-
ing performance can also be expected in this learned
space.

5.3 Performance on WebKB Data Set

A subset of the WebKB data set (Craven et al., 1998),
which was collected from the web sites of the computer
science departments of four universities, is used to test
our method. Each webpage is labeled with one out of
seven categories: student, professor, course, project,
staff, department, and “other”. The original data set
contains 4,160 pages and 9,998 hyperlinks. We adopt
the same strategy as that in (Chu et al., 2007; Silva
et al., 2008) to translate the hyperlinks into 66,249
undirected linkages over the pages by assuming that
two pages are likely to be positively correlated if they
are hyperlinked by the same hub page. Each webpage
is represented as bag-of-words, a vector of “term fre-
quency” components scaled by the “inverse document
frequency”, and then normalized to unit length. This
preprocessing step is the same as that in (Chu et al.,
2007). The task is to classify each webpage into two
classes: “other” and “non-other”. The same perfor-
mance measure, area under the ROC curve (AUC),
and the same evaluation strategy as those in (Silva
et al., 2008) are adopted for all the methods, i.e., for a
specific university, the same 100 subsamples as those
in (Chu et al., 2007; Silva et al., 2008) are used, in each
of which 10% of the data points are randomly chosen
for training and the rest for testing.

The average AUC with standard deviation over 100 tri-
als is reported in Table 1, from which we can find that
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LWP achieves performance at least comparable with
the state of the art for all four universities. In particu-
lar, compared with GPC and RGP, LWP achieves far
better results.

5.4 Performance on Cora Data Set

A subset of the Cora corpus (McCallum et al., 2000)
including 4,285 machine learning papers with their
bibliographic citations is used for this experiment. All
the papers in this subset are partitioned into 7 classes,
the information about which is shown in the second
column of Table 2. We adopt the same feature repre-
sentation scheme as that in (Silva et al., 2008), where
each paper is represented by a feature vector of dimen-
sionality 20,082. For this data set, very good perfor-
mance can be achieved even if q is set to as small as
1. Hence, we just set q to 1 for this data set. For
each class, 1% of the whole set is randomly selected
for training and the rest for testing. One hundred
rounds of such partitioning are repeated. The average
AUC with standard deviation is reported in Table 2,
in which “GPC with Citation” is the method proposed
in (Silva et al., 2008) by adding the citation adjacency
matrix as a binary input feature for each paper. From
the table, we can see that LWP is far better than re-
lated methods. In (Silva et al., 2008), the authors said
that the AUC of RGP on this data set is close to 1. So
it means that on this data set, LWP is also comparable
with the state of the art.

5.5 Performance on Political Books Data Set

This data set contains 105 books, 43 of which are
labeled as liberal ones. Pairs of books that are fre-
quently bought together by the same customer are
used to represent the relationships between them. The
task is to decide whether a specific book is of liberal
political inclination or not. The words in the Ama-
zon.com front page for a book are used as features
to represent the book. Each book is represented as
bag-of-words and is preprocessed by the same tech-
niques as for the WebKB data set. After prepro-
cessing, each book is represented by a feature vec-
tor of length 13,178. The original data is available
at http://www-personal.unich.edu/mejn/netdata, and
the preprocessed data can be downloaded from
http://www.statslab.cam.ac.uk/∼silva. We randomly
choose half of the whole data for training and the rest
for testing. This subsampling process is repeated for
100 rounds and the average AUC with its standard
deviation is reported in Table 3 4, from which we can

4The results for GPC, RGP and XGP are taken from
(Silva et al., 2008), in which the standard deviation is not
reported.

Table 3: Experiment on the data set of political books.
Results for GPC, RGP and XGP are taken from (Silva
et al., 2008).

GPC RGP XGP KPCA LWP

0.92 0.98 0.98 0.93± 0.03 0.98 ± 0.02

see that LWP is comparable with the state of the art.
Here, KPCA also refers to the method using the initial
values of bi in LWP to perform classification.

5.6 Discussions

From the above experiments, we can see that LWP
achieves very promising performance on all the data
sets tested, while RGP and XGP can only perform
well on some of the data sets. More specifically, RGP
performs quite well on the Cora data set but it per-
forms relatively badly on the WebKB data set. On the
other hand, XGP achieves unsatisfactory performance
on the Cora data set. This implies that LWP is much
more robust than RGP and XGP. In particular, com-
pared with GPC which naively discards the relational
information in the data, our method achieves far bet-
ter results, implying that the relational information is
indeed very informative and our LWP can exploit the
information very effectively.

6 Concluding Remarks

Relational information is very useful for specifying the
similarity between different instances. We have pre-
sented a very effective LWP model for performing ker-
nel learning by seamlessly integrating relational infor-
mation with the input attributes. Besides the promis-
ing performance for instance classification, LWP can
also be used for data visualization and clustering.

In our future work, we will focus on extensive empir-
ical comparison of LWP with other related methods
on the aspect of inductive inference. Moreover, it is
also desirable to apply our model to social network
analysis.
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Table 1: Mean and standard deviation of AUC over 100 rounds of test on the WebKB data set. Results for other related
methods are taken from (Silva et al., 2008). All the methods are based on the same data partitions for both training
and testing. #Other and #All refer to the numbers of positive examples and all examples, respectively. #Links is the
number of linkages in the corresponding data set.

University #Other/#All/#Links GPC RGP XGP LWP

Cornell 617 / 865 / 13177 0.708 ± 0.021 0.884 ± 0.025 0.917 ± 0.022 0.932 ± 0.019
Texas 571 / 827 / 16090 0.799 ± 0.021 0.906 ± 0.026 0.949 ± 0.015 0.960 ± 0.009

Washington 939 / 1205 / 15388 0.782 ± 0.023 0.877 ± 0.024 0.923 ± 0.016 0.935 ± 0.010
Wisconsin 942 / 1263 / 21594 0.839 ± 0.014 0.899 ± 0.015 0.941 ± 0.018 0.940 ± 0.012

Table 2: Mean and standard deviation of AUC over 100 rounds of test on the Cora data set. Results for other related
methods are taken from (Silva et al., 2008). All the methods are based on the same data partitions for both training and
testing. #Pos and #Neg refer to the numbers of positive examples and negative examples, respectively. #Citations is
the number of linkages in the corresponding data set.

Group #Pos/#Neg/#Citations GPC GPC with Citation XGP LWP

5vs1 346 / 488 / 2466 0.905 ± 0.031 0.891 ± 0.022 0.945 ± 0.053 0.990 ± 0.000
5vs2 346 / 619 / 3417 0.900 ± 0.032 0.905 ± 0.044 0.933 ± 0.059 0.991 ± 0.001
5vs3 346 / 1376 / 3905 0.863 ± 0.040 0.893 ± 0.017 0.883 ± 0.013 0.986 ± 0.001
5vs4 346 / 646 / 2858 0.916 ± 0.030 0.887 ± 0.018 0.951 ± 0.042 0.997 ± 0.000
5vs6 346 / 281 / 1968 0.887 ± 0.054 0.843 ± 0.076 0.955 ± 0.041 0.998 ± 0.000
5vs7 346 / 529 / 2948 0.869 ± 0.045 0.867 ± 0.041 0.926 ± 0.076 0.992 ± 0.002
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