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Abstract

Homophily and stochastic equivalence are two
primary features of interest in social networks.
Recently, the multiplicative latent factor model
(MLFM) is proposed to model social net-
works with directed links. Although MLFM
can capture stochastic equivalence, it cannot
model well homophily in networks. However,
many real-world networks exhibit homophily
or both homophily and stochastic equivalence,
and hence the network structure of these net-
works cannot be modeled well by MLFM. In
this paper, we propose a novel model, called
generalized latent factor model (GLFM), for so-
cial network analysis by enhancing homophily
modeling in MLFM. We devise a minorization-
maximization (MM) algorithm with linear-time
complexity and convergence guarantee to learn
the model parameters. Extensive experiments
on some real-world networks show that GLFM
can effectively model homophily to dramati-
cally outperform state-of-the-art methods.

1 Introduction

A social network 1 [Wasserman and Faust, 1994] is often
represented as a graph in which the nodes represent the
objects and the edges (or called links) represent the bi-
nary relations between objects. The edges in a graph can
be directed or undirected. If the edges are directed, we
call the graph a directed graph. Otherwise, the graph is
an undirected graph. Unless otherwise stated, we focus
on directed graphs in this paper because an undirected
edge can be represented by two directed edges with oppo-
site directions. Some typical networks include friendship
networks among people, web graphs, and paper citation
networks.

As pointed out by [Hoff, 2008], homophily and stochas-
tic equivalence are two primary features of interest in
social networks. If an edge is more likely to exist be-
tween two nodes with similar characteristics than be-

1In this paper, we use the terms ‘network’, ‘social network’
and ‘graph’ interchangeably.

tween those nodes having different characteristics, we
say the graph exhibits homophily. For example, two
individuals are more likely to be friends if they share
common interests. Hence, a friendship graph has the
feature of homophily. On the other hand, if the nodes
of a graph can be divided into groups where members
within a group have similar patterns of links, we say this
graph exhibits stochastic equivalence. The web graph
has such a feature because some nodes can be described
as hubs which are connected to many other nodes called
authorities but the hubs or authorities are seldom con-
nected among themselves. For stochastic equivalence,
the property that members within a group have similar
patterns of links also implies that if two nodes link to
or are linked by one common node, the two nodes most
likely belong to the same group.

Examples of homophily and stochastic equivalence in
directed graphs are illustrated in Figure 1, where the
locations in the 2-dimensional space denote the charac-
teristics of the points (nodes). From Figure 1(a), we can
see that a link is more likely to exist between two points
close to each other, which is the property of homophily.
In Figure 1(b), the points form three groups associated
with different colors, and the nodes in each group share
similar patterns of links to nodes in other groups, but
the nodes in the same group are not necessarily con-
nected to each other. This is the property of stochastic
equivalence. Note that in a graph exhibiting stochastic
equivalence, two points close to each other are not nec-
essarily connected to each other and connected points
are not necessarily close to each other, which is different
from the property of homophily.

(a) homophily (b) stochastic equivalence
Figure 1: Homophily and stochastic equivalence in net-
works.



As social network analysis (SNA) is becoming more
and more important in a wide range of applications,
many SNA models have been proposed [Goldenberg et
al., 2009]. In this paper, we focus on latent variable
models [Bartholomew and Knott, 1999] which have been
successfully applied to model social networks [Hoff, 2008;
Nowicki and Snijders, 2001; Hoff et al., 2002; Kemp
et al., 2006; Airoldi et al., 2008; Hoff, 2009]. These
models include: the latent class model [Nowicki and
Snijders, 2001] and its extensions [Kemp et al., 2006;
Airoldi et al., 2008], the latent distance model [Hoff et
al., 2002], the latent eigenmodel [Hoff, 2008], and the
multiplicative latent factor model (MLFM) [Hoff, 2009].
Among all these models, the recently proposed latent
eigenmodel, which includes both the latent class model
and the latent distance model as special cases, can cap-
ture both homophily and stochastic equivalence in net-
works. However, it can only model undirected graphs.
MLFM [Hoff, 2009] adapts the latent eigenmodel for di-
rected graphs. However, as to be shown in our experi-
ments, in fact it cannot model well homophily.

In this paper, we propose a novel model, called gen-
eralized latent factor model (GLFM), for social network
analysis by enhancing homophily modeling in MLFM.
The learning algorithm of GLFM is guaranteed to con-
verge to a local optimum and has linear-time complexity.
Hence, GLFM can be used to model large-scale graphs.
Extensive experiments on community detection in some
real-world networks show that GLFM dramatically out-
performs existing methods.

2 Notation and Definition

We use boldface uppercase letters, such as K, to denote
matrices, and boldface lowercase letters, such as x, to
denote vectors. The ith row and the jth column of a
matrix K are denoted as Ki∗ and K∗j , respectively. Kij

denotes the element at the ith row and jth column in K.
xi denotes the ith element in x. We use tr(K) to denote
its trace, KT for its transpose and K−1 for its inverse.
‖ · ‖ is used to denote the length of a vector. | · | de-
notes the cardinality of a set. I denotes the identity ma-
trix whose dimensionality depends on the context. For a
matrix K, K � 0 means that K is positive semi-definite
(psd) and K � 0 means that K is positive definite (pd).
K � M means K −M � 0. N (·) denotes the normal
distribution, either for scalars or vectors. ◦ denotes the
Hadamard product (element-wise product).

Let N denote the number of nodes in a graph. A is
the adjacency (link) matrix for the N nodes. Aij = 1
if there exists a link from node i to node j. Otherwise,
Aij = 0. D denotes the number of latent factors. In
real-world networks, if Aij = 1, we can say that there
is a relation from i to j. However, Aij = 0 does not
necessarily mean that there is no relation from i to j.
In most cases, Aij = 0 means that the relationship from
i to j is missing. Hence, we use an indicator matrix Z
to indicate whether or not an element is missing. More
specifically, Zij = 1 means that Aij is observed while

Zij = 0 means that Aij is missing.

3 Multiplicative Latent Factor Models
The latent eigenmodel is formulated as follows 2:

Θik = log odds(Aik = 1 |Xi∗,Xk∗, µ) = µ+ Xi∗ΛXT
k∗,

where X is an N×D matrix with Xi∗ denoting the latent
representation of node i and µ is a parameter reflecting
the overall density of the links in the network, Λ is a D×
D diagonal matrix with the diagonal entries being either
positive or negative. The latent eigenmodel generalizes
both latent class models and latent distance models. It
can model both homophily and stochastic equivalence in
undirected graphs [Hoff, 2008].

To adapt the latent eigenmodel for directed graphs,
MLFM defines

Θik = µ+ Xi∗ΛWT
k∗, (1)

where X and W have orthonormal columns. Note that
the key difference between the latent eigenmodel and
MLFM lies in the fact that MLFM adopts a different
receiver factor matrix W which enables MLFM to model
directed (asymmetric) graphs. As we will show in our
experiments, this modification in MLFM makes it fail to
model homophily in networks.

Letting Θ = [Θik]Ni,k=1, we can rewrite MLFM as fol-
lows:

Θ = µE + XΛWT , (2)

where E is an N×N matrix with all entries being 1.
We can find that MLFM is a special case of the fol-

lowing model:
Θ = µE + UVT . (3)

For example, we can get MLFM by setting U = X and
V = WΛ. Furthermore, it is easy to compute the X,
W and Λ in (2) based on the learned U and V in (3).
Hence, in the sequel, MLFM refers to the model in (3).

4 Generalized Latent Factor Models
As discussed above, MLFM can capture stochastic equiv-
alence but cannot model well homophily in directed
graphs. Here, we propose our GLFM to enhance ho-
mophily modeling in MLFM.

4.1 Model

In GLFM, Θik is defined as follows:

Θik = µ+
1

2
Ui∗U

T
k∗ +

1

2
Ui∗V

T
k∗. (4)

Comparing (4) to (3), we can find that GLFM gener-
alizes MLFM by adding an extra term Ui∗U

T
k∗.

3 It is

2Note that in this paper, we assume for simplicity that
there is no attribute information for the links. It is straight-
forward to integrate attribute information into the existing
latent variable models as well as our proposed model.

3Note that the coefficient 1
2

in (4) makes no essential dif-
ference between (4) and (3). It is only for convenience of
computation.



this extra term that enables GLFM to model homophily
in networks, which will be detailed in Section 4.2 when
we analyze the objective function in (7). This will also
be demonstrated empirically later in our experiments.

Based on (4), the likelihood of the observations can be
defined as follows:

p(A |U,V, µ) =
∏
i 6=k

[SAik

ik (1− Sik)1−Aik ]Zik , (5)

where

Sik =
exp (Θik)

1 + exp(Θik)
. (6)

Note that as in the conventional SNA model, we ignore
the diagonal elements of A. That is, in this paper, we
set Aii = Zii = 0 by default.

Furthermore, we put normal priors on the param-
eters µ, U and V: p(µ) = N (µ | 0, τ−1), p(U) =∏D
d=1N (U∗d |0, βI), p(V) =

∏D
d=1N (V∗d |0, γI).

4.2 Learning
Although the Markov chain Monte Carlo (MCMC) al-
gorithms designed for other latent variable models can
easily be adapted for GLFM, we do not adopt MCMC
here for GLFM because MCMC methods typically incur
very high computational cost. In this paper, we adopt
the maximum a posteriori (MAP) estimation strategy to
learn the parameters. The log posterior probability can
be computed as follows:

L =
∑
i6=k

{1

2
AikUi∗U

T
k∗ +

1

2
AikUi∗V

T
k∗ +Aikµ

− Zik log
[
1 + exp(Θik)

]}
− 1

2β
tr(UUT )− 1

2γ
tr(VVT )− τ

2
µ2 + c, (7)

where c is a constant independent of the parameters.
Note that in (7) we assume that all existing links should
be observed. That is to say, if Aik = 1, then Zik = 1.

The term AikUi∗U
T
k∗ in (7) results from the extra

term Ui∗U
T
k∗ in (4). In (7), to maximize the objective

function L, we have to make Ui∗U
T
k∗ as large as pos-

sible if there exists a link between nodes i and k (i.e.,
Aik = 1). This conforms to the property of homophily,
i.e., a link is more likely to exist between two nodes with
similar characteristics than between those nodes having
different characteristics. Note that here the latent fac-
tor Ui∗ reflects the characteristics of node i. Therefore,
the extra term Ui∗U

T
k∗ in (4) enables GLFM to model

homophily in networks.
If we directly optimize all the parameters U, V and

µ jointly, the computational cost will be very high. For
example, if we want to use the second-order information,
generally we need to invert the Hessian matrix where the
time complexity is cubic in the number of parameters.

Here, we adopt an alternating projection strategy to
maximize L. More specifically, each time we optimize
one parameter, such as U, with the other parameters
fixed.

Learning U

To learn U, we optimize each row of it with all other
rows fixed. The gradient vector and Hessian matrix can
be computed as follows:

∂L

∂UT
i∗

=− 1

β
UT
i∗ +

1

2
VT
[
AT
i∗ − (Zi∗ ◦ Si∗)

T
]

+
1

2
UT
[
AT
i∗ + A∗i − (Zi∗ ◦ Si∗)

T − Z∗i ◦ S∗i

]
,

∂2L

∂UT
i∗∂Ui∗

= − 1

β
I− 1

4

∑
k,k 6=i

{
ZkiSki(1− Ski)UT

k∗Uk∗

}
− 1

4

∑
k,k 6=i

{
ZikSik(1− Sik)[Uk∗ + Vk∗]

T [Uk∗ + Vk∗]
}
.

Because both the gradient vector and Hessian matrix
depend on Si∗ which is a function of Ui∗, we have to
resort to iterative methods to find the optimal values.
Here, we devise a minorization-maximization (MM) al-
gorithm [Lang et al., 2000] to learn it. MM is a so-called
expectation-maximization (EM) algorithm [Dempster et
al., 1977] without missing data, alternating between con-
structing a concave lower bound of the objective function
and maximizing that bound.

Because 0 < Sik <
1
2 , we can get Sik(1− Sik) < 1

4 .
Let us define:

Hi =− 1

β
I− 1

16

∑
k,k 6=i

{
Zik[Uk∗ + Vk∗]

T [Uk∗ + Vk∗]
}

− 1

16

∑
k,k 6=i

{
ZkiU

T
k∗Uk∗

}
.

It is easy to prove that ∂2L
∂UT

i∗∂Ui∗
� Hi.

Let

f(Ui∗) =L(Ui∗(t)) + [Ui∗ −Ui∗(t)]×
∂L

∂UT
i∗

(t)

+
1

2
[Ui∗ −Ui∗(t)]Hi(t)[Ui∗ −Ui∗(t)]

T ,

where Ui∗(t) denotes the value of the former iteration
and Hi(t) is computed with the updated U except for
Ui∗.

Then we have the following theorem:

Theorem 1 L(Ui∗) ≥ f(Ui∗), which means that
f(Ui∗) is a lower bound of L(Ui∗).

The proof of Theorem 1 is simple and we omit it here.
We can see that f(Ui∗) has a quadratic form of Ui∗.

By setting the gradient of f(Ui∗) with respect to Ui∗ to
0, we have the update rule for Ui∗:

Ui∗(t+ 1) = Ui∗(t)−
[ ∂L

∂UT
i∗

(t)
]T
×Hi(t)

−1.



Learning V
The gradient vector and Hessian matrix of Vi∗ can be
computed as follows:

∂L

∂VT
i∗

= − 1

γ
VT
i∗ +

1

2
UT
[
A∗i − (Z∗i ◦ S∗i)

]
∂2L

∂VT
i∗∂Vi∗

= − 1

γ
I− 1

4

∑
k,k 6=i

{
ZkiSki(1− Ski)UT

k∗Uk∗

}
.

Let Gi = − 1
γ I − 1

16

∑
k,k 6=i

{
ZkiU

T
k∗Uk∗

}
, we can

prove that ∂2L
∂VT

i∗∂Vi∗
� Gi.

Similar to the update rule for Ui∗, we can obtain the
update rule for Vi∗ as follows:

Vi∗(t+ 1) = Vi∗(t)−
[ ∂L

∂VT
i∗

(t)
]T
×Gi(t)

−1,

where Vi∗(t) denotes the value of the former iteration
and Gi(t) is computed with the updated parameters ex-
cept for Vi∗.

Learning µ
Using similar learning techniques as those for U and V,
we can get the update rule for µ:

µ(t+ 1) = µ(t) +
4[
∑
k 6=i(Aik − ZikSik)− τµ(t)]

4τ +
∑
k 6=i Zik

.

4.3 Convergence and Computational
Complexity

With the MM algorithm, the learning procedure of
GLFM is guaranteed to converge to a local maximum.

The time complexity to compute the gradient and Hes-
sian for node i is linear to the total number of ones in
both Z∗i and Zi∗. In general, this number is O(1) be-
cause the observations in real networks are always very
sparse. Furthermore, since Hi and Gi are D×D, the
computational complexity to invert the Hessian matrices
is O(D3). Typically, D is a very small number. Hence,
to update the whole U and V, only O(N) time is needed.

5 Experiment
There exist many different SNA tasks such as social po-
sition and role estimation [Wasserman and Faust, 1994],
link prediction [Hoff, 2009], node classification [Li et al.,
2009a; Li and Yeung, 2009; Li et al., 2009b], community
detection [Yang et al., 2009a], and so on. In this paper,
we adopt the same evaluation strategy as that in [Yang
et al., 2009a; 2009b] for social community detection. The
main reason for choosing this task is that from our model
formulation we can clearly see the difference between
GLFM and other latent factor models. However, many
other models from different research communities have
also been proposed for SNA. It is difficult to figure out
the connection and difference between those models and
GLFM from the formulation perspective. Hence, we use
empirical evaluation to compare them. Most mainstream
models have been compared in [Yang et al., 2009a;

2009b] for community detection, which provides a good
platform for our empirical comparison.

For MLFM and GLFM, we adopt k-means to perform
clustering based on the normalized latent representation
U. Here normalization means that the latent represen-
tation of each node is divided by its length. Because the
magnitude of Ui∗ reflects the activity of i, we select the
most active user as the first seed of the k-means, and
then choose a point as the seed of the next community
if summation of the distances between this point and all
the existing seeds is the largest one. Hence, the initial-
ization of k-means is fixed. We set Z = A. For fair
comparison, the hyper-parameters in GLFM and all the
baselines to be compared, such as the τ in (7), are cho-
sen from a wide range and the best results are reported.
More specifically, for GLFM, the τ is fixed to 106, β and
γ are set to 2, and D = 20.

5.1 Data Sets and Evaluation Metric
As in [Yang et al., 2009a], we use two paper citation
networks, Cora and Citeseer data sets 4, for evaluation.
Both data sets contain content information in addition
to the directed links.

The Cora data set contains 2708 research papers from
the 7 subfields of machine learning: case-based reason-
ing, genetic algorithms, neural networks, probabilistic
methods, reinforcement learning, rule learning, and the-
ory. Each paper is described by a 0/1-valued word vec-
tor indicating the absence/presence of the corresponding
word from a dictionary of 1433 unique words. There are
overall 5429 citations (links) between the papers.

The Citeseer data set contains 3312 papers which
can be classified into 6 categories. Each paper is de-
scribed by a 0/1-valued word vector indicating the ab-
sence/presence of the corresponding word from a dic-
tionary of 3703 unique words. There are overall 4732
citations (links) between the papers. After deleting the
self-links, we obtain 4715 links for our evaluation.

As in [Yang et al., 2009a], we use Normalized Mutual
Information (NMI ), Pairwise F-Measure (PWF ) and
Modularity (Modu) as metrics to measure the clustering
accuracy of our model. For all the algorithms, we set the
number of communities to the ground-truth number of
class labels in the data.

5.2 Baselines
We compare GLFM with the closely related method
MLFM [Hoff, 2009]. The U and V in both MLFM and
GLFM are initialized by principal component analysis
(PCA) on the content information. In addition, we also
adopt the methods introduced in [Yang et al., 2009a]
and [Yang et al., 2009b] for comparison. Those methods
can be divided into three groups: link-based methods,
content-based methods, link+content based methods.

The link-based methods include: PHITS [Cohn and
Chang, 2000], LDA-Link [Erosheva et al., 2004]–an ex-
tension of latent Dirichlet allocation (LDA) for link

4The two data sets can be downloaded from http://www.
cs.umd.edu/projects/linqs/projects/lbc/index.html.



analysis, the popularity-based conditional link model
(PCL) [Yang et al., 2009b], and the normalized cut
(NCUT) for spectral clustering [Shi and Malik, 2000].

The content-based methods include: the probabilistic
latent semantic analysis (PLSA) [Hofmann, 1999], LDA-
Word, and NCUT respectively with the Gaussian RBF
kernel and the probabilistic product (PP) kernel [Jebara
et al., 2004].

The link+content based methods include: PHITS-
PLSA [Cohn and Hofmann, 2000], LDA-Link-Word [Ero-
sheva et al., 2004], Link-Content-Factorization
(LCF) [Zhu et al., 2007], NCUT, PCL-PLSA, PHITS-
DC, PCL-DC and C-PLDC [Yang et al., 2009a]. Here
PCL-PLSA represents the combination of PCL and
PLSA, PHITS-DC represents the PHITS model com-
bined with the discriminative content (DC) model in
[Yang et al., 2009a] , PCL-DC represents the PCL model
combined with DC, and C-PLDC refers to the combined
popularity-driven link model and DC model [Yang et
al., 2009a]. Moreover, the setting for t in C-PLDC
follows that in [Yang et al., 2009a]. More specifically,
C-PLDC(t = 1) denotes a special case of C-PLDC
without popularity modeling [Yang et al., 2009a].

5.3 Illustration

We sample a subset from Cora for illustration. The sam-
pled data set contains two classes. The learned latent
representations U for the data instances are illustrated
in Figure 2, where the blue circle and red cross are used
to denote the data instances from two different classes
respectively, and the (directed) black edges are the ci-
tation relationships between the data points. In Figure
2, (a) and (c) show the original learned latent factors of
MLFM and GLFM, respectively, (b) and (d) show the
corresponding normalized latent factors of MLFM and
GLFM, respectively. Here normalization means that we
divide the latent factor of each node by its length. Hence,
it is clear to see that all the points in (b) and (d) have
unit length. Note that for fair comparison all the differ-
ent subfigures from (a) to (d) are generated automati-
cally by our program with the same parameter settings
and initial values.

In (a) and (b) of Figure 2, two instances are more
likely to be close if they are connected by or connect to
the same instance, which is just the feature of stochastic
equivalence. However, there exist many links across the
inner part of the circle in (b), which means that two
instances linked with each other are not necessarily close
in the latent space. This just violates the feature of
homophily. Hence, we can conclude that MLFM cannot
effectively model homophily in networks.

In (c) and (d) of Figure 2, homophily is obvious since
two nodes are close to each other in general if there exists
a link between them.

5.4 Convergence Speed

When D = 20, the objective function values of GLFM
against the iteration number T are plotted in Figure 3,
from which we can see that our learning procedure with
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Figure 2: Illustration of the homophily and stochastic
equivalence modeling in networks.

the MM method for GLFM converges very fast. We set
the maximum number of iterations T as T = 5 in all our
following experiments.
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Figure 3: Convergence speed of GLFM.

5.5 Accuracy

We compare GLFM with all the baselines introduced in
Section 5.2 in terms of NMI, PWF and Modu [Yang et
al., 2009a; 2009b]. The results are reported in Table 1,
from which we can see that GLFM achieves the best per-
formance on all the data sets for the three criteria. Espe-
cially for the Citeseer data set, GLFM dramatically out-
performs the second best model. According to the prior
knowledge, the paper citation networks are more likely
to exhibit homophily because the citations often exist
among papers from the same community. This can ex-
plain why GLFM can achieve such good performance on
these data sets. Hence, GLFM provides a way to model
networks which cannot be modeled well by MLFM.

Figure 4 shows the performance of GLFM when D
takes different values. We see that GLFM is not sensitive
to D as long as D is not too small.



Table 1: Community detection performance on Cora and Citeseer data sets (the best performance is shown in bold
face).

Cora Citeseer
Algorithm NMI PWF Modu NMI PWF Modu

PHITS 0.0570 0.1894 0.3929 0.0101 0.1773 0.4588
Link LDA-Link 0.0762 0.2278 0.2189 0.0356 0.2363 0.2211

PCL 0.0884 0.2055 0.5903 0.0315 0.1927 0.6436
NCUT 0.1715 0.2864 0.2701 0.1833 0.3252 0.6577

PLSA 0.2107 0.2864 0.2682 0.0965 0.2298 0.2885
Content LDA-Word 0.2310 0.2774 0.2970 0.1342 0.2880 0.3022

NCUT(RBF kernel) 0.1317 0.2457 0.1839 0.0976 0.2386 0.2133
NCUT(pp kernel) 0.1804 0.2912 0.2487 0.1986 0.3282 0.4802

PHITS-PLSA 0.3140 0.3526 0.3956 0.1188 0.2596 0.3863
LDA-Link-Word 0.3587 0.3969 0.4576 0.1920 0.3045 0.5058
LCF 0.1227 0.2456 0.1664 0.0934 0.2361 0.2011

Link NCUT(RBF kernel) 0.2444 0.3062 0.3703 0.1592 0.2957 0.4280
+ NCUT(pp kernel) 0.3866 0.4214 0.5158 0.1986 0.3282 0.4802

Content PCL-PLSA 0.3900 0.4233 0.5503 0.2207 0.3334 0.5505
PHITS-DC 0.4359 0.4526 0.6384 0.2062 0.3295 0.6117
PCL-DC 0.5123 0.5450 0.6976 0.2921 0.3876 0.6857
C-PLDC(t=1) 0.4294 0.4264 0.5877 0.2303 0.3340 0.5530
C-PLDC 0.4887 0.4638 0.6160 0.2756 0.3611 0.5582

MLFM 0.3640 0.3874 0.2325 0.2558 0.3356 0.0089
GLFM 0.5229 0.5545 0.7234 0.3951 0.5053 0.7563
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Figure 4: Sensitivity to the parameter D of GLFM.

6 Conclusion

In this paper, a generalized latent factor model is pro-
posed to model homophily in social networks. A linear-
time learning algorithm with convergence guarantee is
proposed to learn the parameters. Experimental results
on community detection in real-world networks show
that our model can effectively model homophily to out-
perform state-of-the-art methods.
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