
Adapting RBF Neural Networks to

Multi-Instance Learning

MIN-LING ZHANG and ZHI-HUA ZHOU∗

National Laboratory for Novel Software Technology, Nanjing University,

Nanjing 210093, China. Tel.: +86-25-8368-6268; Fax: +86-25-8368-6268.

email: zhangml@lamda.nju.edu.cn, zhouzh@nju.edu.cn

Abstract. In multi-instance learning, the training examples are bags composed of

instances without labels, and the task is to predict the labels of unseen bags through

analyzing the training bags with known labels. A bag is positive if it contains at least

one positive instance, while it is negative if it contains no positive instance. In this

paper, a neural network based multi-instance learning algorithm named RBF-MIP is

presented, which is derived from the popular radial basis function (RBF) methods.

Briefly, the first layer of an RBF-MIP neural network is composed of clusters of bags

formed by merging training bags agglomeratively, where Hausdorff metric is utilized

to measure distances between bags and between clusters. Weights of second layer

of the RBF-MIP neural network are optimized by minimizing a sum-of-squares error

function and worked out through singular value decomposition (SVD). Experiments

on real-world multi-instance benchmark data, artificial multi-instance benchmark data

and natural scene image database retrieval are carried out. The experimental results

show that RBF-MIP is among the several best learning algorithms on multi-instance

problems.

Key words. Machine learning, Multi-instance learning, Radial basis function, Neu-

ral networks, Hausdorff distance, Singular value decomposition, Principle component

analysis, Content-based image retrieval

1. Introduction

At present, roughly speaking, there are three frameworks for learning from ex-
amples [23]. That is, supervised learning, unsupervised learning and reinforce-
ment learning. Supervised learning attempts to learn a concept for correctly
labeling unseen examples, where the training examples are with labels. Unsu-
pervised learning attempts to learn the structure of the underlying sources of
examples, where the training examples are with no labels. Reinforcement learn-
ing attempts to learn a mapping from states to actions, where the examples are
with no labels but with delayed rewards that could be viewed as delayed labels.

∗Corresponding author.

1

The notion of multi-instance learning was proposed by Dietterich et al. [12]
in their investigation of drug activity prediction. In multi-instance learning, the
training set is composed of many bags each containing many instances. If a
bag contains at least one positive instance then it is labeled as a positive bag.
Otherwise it is labeled as a negative bag. The labels of the training bags are
known, but those of the training instances are unknown. The task is to learn
something from the training set for correctly labeling unseen bags. Dietterich
et al. [12] showed that learning methods ignoring the characteristics of multi-
instance learning could not work well in this scenario. Due to its unique charac-
teristics and extensive applicability, multi-instance learning has been regarded
as a new learning framework parallel to supervised learning, unsupervised learn-
ing, and reinforcement learning [23].

When the notion of multi-instance learning was proposed, Dietterich et al.
[12] indicated that a particular interesting issue in this area is to design multi-
instance modifications for neural networks. In this paper, this problem is ad-
dressed in the way that a multi-instance neural network algorithm named RBF-
MIP, i.e. Radial Basis Function for Multi-Instance Problems, is proposed. As
its name implied, RBF-MIP is derived from the popular radial basis function
methods [6]. Briefly, the first layer of an RBF-MIP neural network is composed
of clusters of bags formed by merging training bags agglomeratively, where Haus-
dorff metric [14, 31] is utilized to measure distances between bags and between
clusters. Second layer weights of the RBF-MIP neural network are optimized
by minimizing a sum-of-squares error function and worked out through singular
value decomposition [26]. Experiments on the drug activity prediction data,
which is the only real-world benchmark test data for multi-instance learning at
present, some artificial benchmark multi-instance data and natural scene im-
age database retrieval, show that RBF-MIP is among the several top-ranked
multi-instance learning methods. Furthermore, the performance of RBF-MIP
is significantly better than that of BP-MIP [37], which is another neural net-
work based multi-instance learner derived from the traditional Backpropagation
algorithm [29].

The rest of this paper is organized as follows. In Section 2, the drug activity
prediction problem is briefly introduced. In Section 3, previous works on multi-
instance learning are reviewed. In Section 4, RBF-MIP is presented. In Section
5, the experimental results on various multi-instance learning problems are re-
ported. Finally in Section 6, the main contribution of this paper is summarized
and several issues for future work are indicated.

2

2. Drug Activity Prediction

Most drugs are small molecules working by binding to larger protein molecules
such as enzymes and cell-surface receptors. The potency of a drug is determined
by the degree of binding. For molecules qualified to make a drug, one of its
low-energy shapes could tightly bind to the target area. While for molecules
unqualified to make a drug, none of its low-energy shapes could tightly bind to
the target area.

In the middle of 1990’s, Dietterich et al. [12] investigated the problem of drug
activity prediction. The goal was to endow learning systems with the ability of
predicting if a new molecule was qualified to make some drug, through analyzing
a collection of known molecules. As illustrated in Figure 1, the main difficulty
of this problem is that each molecule may have many alternative low-energy
shapes. However, biochemists only know if a molecule is qualified to make a
drug or not, instead of knowing which of its alternative low-energy shapes is
responsible for the qualification.

Figure 1. The shape of a molecule changes as it rotates an internal bond.

An intuitive solution is to use supervised algorithms by regarding all the low-
energy shapes of the molecules qualified to make the drug as positive training
examples, while regarding all the low-energy shapes of the molecules unqual-
ified to make the drug as negative training examples. However, as shown by
Dietterich et al. [12], such a method can hardly work because there may be a
great many of false positive examples.

In order to solve this problem, Dietterich et al. [12] regarded each molecule
as a bag, and regarded the alternative low-energy shapes of the molecule as the
instances in the bag, thereby formulated multi-instance learning. In order to
represent the shapes, the molecules was placed in a standard position and orien-
tation and then a set of 162 rays emanating from the origin was constructed so
that the molecular surface was sampled approximately uniformly, as illustrated
in Figure 2. There were also four features that represented the position of an
oxygen atom on the molecular surface. Therefore each instance in the bags was
represented by a 166-dimensional numerical feature vector.

3

Figure 2. The ray-based representation of the molecular shape.

Based on such a representation, Dietterich et al. [12] proposed three Axis-
Parallel Rectangle (abbreviated as APR) algorithms, which attempt to search
for appropriate axis-parallel rectangles constructed by the conjunction of the
features. Their experiments showed that the iterated-discrim APR algorithm
achieves the best result on the Musk data, which is the only real-world bench-
mark test data for multi-instance learning until now, while the performance of
popular supervised learning algorithms such as C4.5 decision tree and Backprop-
agation neural network is very poor. Note that Dietterich et al. [12] indicated
that since the APR algorithms were optimized to the Musk data, the perfor-
mance of iterated-discrim APR might be the upper bound for this data.

It should be mentioned that multi-instance problems are not unique to drug
activity prediction. In fact, they reveal themselves in many real-world appli-
cations [21, 30]. But unfortunately, machine learning community had not paid
special attention to such kinds of problems until Dietterich et al. [12].

3. Previous Work

Long and Tan [22] initiated the investigation of the PAC-learnability of axis-
parallel rectangles under the multi-instance learning framework. Resorting to
P-concept [20], they described a high-order polynomial-time theoretical algo-
rithm and showed that if the instances in the bags are independently drawn
from product distribution, then the APR is PAC-learnable. Auer et al. [5]
showed that if the instances in the bags are not independent then APR learn-
ing under the multi-instance learning framework is NP-hard. Moreover, they
also presented a theoretical algorithm without requiring product distribution
and with reduced time and sample complexity than that of Long and Tan’s

4

algorithm. Later, this theoretical algorithm was transformed into a practical
algorithm named MULTINST [4]. Blum and Kalai [8] gave a reduction from
the problem of PAC-learning under the multi-instance learning framework to
PAC-learning with one-sided or two-sided random classification noise. With the
help of Statistical-Query Model [19], they also presented a theoretical algorithm
with smaller sample complexity than that of Auer et al.’s algorithm. Goldman
et al. [16] presented an efficient on-line agnostic multi-instance learning algo-
rithm for learning the class of constant-dimension geometric patterns, which
tolerated both noise and concept shift. Later, this algorithm was extended so
that it could deal with real-valued output [17].

As reviewed above, theoretical machine learning community has contributed
much to multi-instance learning. But since most of their results are obtained
under the restrictive assumption that each bag must contain the same number
of independent instances, which is usually not the case in real problems, those
results are hard to be used directly in real-world applications.

Fortunately, some practical algorithms for multi-instance learning have been
presented by the applied machine learning community. A representative prac-
tical multi-instance learning algorithm is Diverse Density proposed by Maron
and Lozano-Pérez [24], which has been applied to several applications includ-
ing learning a simple description of a person from a series of images [24], stock
prediction [24], natural scene classification [25], and content-based image re-
trieval [32, 34]. Wang and Zucker [31] extended k-nearest neighbor algorithm for
multi-instance learning through adopting Hausdorff distance. Two algorithms,
i.e. Bayesian-kNN and Citation-kNN, were presented. Bayesian-kNN labels a
bag through analyzing its neighboring bags with Bayes theory. Citation-kNN
borrows the notion of citation of science references, which labels a bag through
analyzing not only its neighboring bags but also the bags that regard the con-
cerned bag as a neighbor. Ruffo [28] presented a multi-instance version of C4.5
decision tree named Relic and applied it to data mining area. Later, Chevaleyre
and Zucker [9] derived ID3-MI and RIPPER-MI, which are multi-instance ver-
sions of decision tree algorithm ID3 and rule learning algorithm RIPPER, where
the key is a multi-instance entropy and a multiple-instance coverage function
respectively. In 2002, Zhou and Zhang [37] developed a multi-instance neu-
ral network named BP-MIP, which extended the popular Backpropagation [29]
algorithm with a global error function defined at the level of bags instead of
at the level of instances. Gärtner et al. [15] developed a kernel on multi-
instance data that can be shown to separate positive and negative bags under
natural assumptions. Furthermore, they proposed another more efficient kernel
that can easily deal with huge bag sizes. Zhang and Goldman [33] proposed
EM-DD, which combines the EM [10] and Diverse Density algorithms to solve

5

multi-instance problems. One year later, Andrews et al. [3] presented two new
formulations of multi-instance learning as a maximum margin problem and ap-
plied them to applications such as drug activity prediction, automated image
indexing and document categorization. Zhou and Zhang [38] utilized ensemble
learning paradigms to solve multi-instance learning problems and obtained the
best result up to now on a benchmark test.

In the early years of the research of multi-instance learning, most works are
on multi-instance classification with discrete-valued outputs. Recently, multi-
instance regression with real-valued outputs begins to attract the attention of
some researchers. Ray and Page [27] showed that the general formulation of
multi-instance regression is NP-hard, and proposed an EM-based multi-instance
regression algorithm. Dooly et al. [13] confirmed the conclusion drawn by
Ray and Page and further proved that learning from real-valued multi-instance
examples is as hard as learning DNF. Amar et al. [2] extended Diverse Density
and Citation-kNN for multi-instance regression. Moreover, they designed some
method for artificially generating data sets for multi-instance regression. Their
data sets are available from http://www.cs.wustl.edu/˜sg/multi-inst-data/.

Multi-instance learning has even attracted the attention of the Inductive
Logic Programming community. De Raedt [11] showed that multi-instance
problems could be regarded as a bias on inductive logic programming. He
also suggested that the multi-instance paradigm could be the key between the
propositional and relational representations, being more expressive than the for-
mer, and much easier to learn than the latter. Zucker and Ganascia [39, 40]
presented REPEAT, an ILP system based on an ingenious bias which firstly
reformulate the relational examples in a multi-instance database, and then in-
duces the final hypothesis with a multi-instance learner. Recently, Alphonse
and Matwin [1] successfully employed multi-instance learning to help relational
learning. At first, the original relational learning problem is approximated by
a multi-instance problem. The resulting data is fed to feature selection tech-
niques adapted from propositional representations. Then the filtered data is
transformed back to relational representation for a relational learner. In this
way, the expressive power of relational representation and the ease of feature
selection on propositional representation are gracefully combined. This work
confirms that multi-instance learning could act as a bridge between proposi-
tional and relational learning.

It is worth noting that when Dietterich et al. [12] coined the term multi-
instance learning, they indicated that a particular interesting issue in this area
is to design multi-instance modifications for decision trees, neural networks, and
other popular machine learning algorithms. During recent years, multi-instance
version of decision trees [9, 28], rule learning algorithms [9], lazy learning algo-

6

rithms [31], and support vector machines [3, 15], have already been presented.
Especially, a neural network based multi-instance learner named BP-MIP [37]
derived from the traditional Backpropagation [29] neural network has also been
proposed. But unfortunately, although BP-MIP performs comparably to many
existing multi-instance learners, it is not so good as several algorithms derived
from other popular machine learning algorithms, such as multi-instance decision
tree named Relic [28], multi-instance lazy learning algorithm named Citation-
kNN and multi-instance support vector machine named MI SVM [15], etc. Based
on the above observation, another multi-instance neural network named RBF-
MIP, which is derived from the popular RBF neural network [6], is proposed in
the following section.

4. RBF-MIP

RBF is a popular neural network learning algorithm where the activation of
a hidden unit is determined by the distance between the input vector and a
prototype vector. Usually, a two-stage training procedure is used to train an
RBF neural network, i.e. the parameters governing the basis functions (corre-
sponding to hidden units) are determined using unsupervised methods while the
final-layer weights are obtained by the solution of a linear problem. Detailed
description and theoretical foundations of RBF neural networks can be found
in the literature [6].

Suppose the training set is composed of N bags, i.e. {B1, B2, . . . , BN}, the
i-th bag is composed of Mi instances, i.e. {Bi1, Bi2, . . . , BiMi

}, each is a p-
dimensional feature vector, e.g. the j-th instance of the i-th bag is [Bij1, Bij2, . . . ,

Bijp]T. The desired output of a positive training bag is 1, while that of a nega-
tive training bag is 0.

Figure 3 illustrates the typical architecture of an RBF-MIP neural network.
As shown in Figure 3, there are two main architectural differences between
the RBF-MIP and the standard RBF neural networks. Firstly, the input of
the RBF-MIP neural network corresponds to a bag containing several vec-
tors (instances) instead of a single vector of the standard RBF neural net-
work. Secondly, for the RBF-MIP neural network, each node Ci (1 ≤ i ≤ M)
in the first layer corresponds to a cluster of training bags where

⋃M
i=1 Ci =

{B1, B2, . . . , BN} and Ci

⋂
i6=j Cj = Ø, while that of the standard RBF neural

network is a prototype vector determining the centre of basis function φi. The
second layer weights wjk(0 ≤ j ≤ M, 1 ≤ k ≤ c) are shown as lines from the
basis functions to the output units, and the biases are shown as weights w0k

from an extra “basis function” φ0 whose output is fixed at 1.

7

Figure 3. Typical architecture of an RBF-MIP neural network.

Similar to the training procedure used for traditional RBF neural network,
a two-stage training procedure is also employed to train the RBF-MIP neural
network. In the first stage, its first layer is automatically constituted by merging
training bags agglomeratively, where Hausdorff metric is utilized to measure
distances between bags and between clusters. In the second stage, weights of its
second layer are optimized by minimizing a sum-of-squares error function and
worked out through singular value decomposition. The above two stages are
scrutinized in Section 4.1 and Section 4.2 respectively.

4.1. first layer clustering

As shown in the literature [6], for traditional RBF neural network, clustering
algorithms such as K-means or self-organizing feature map are usually employed
to partition the training instances (vectors) into a number of disjoint subsets,
i.e. clusters of instances. After that, the centres of their basis functions in the
first layer are determined by the means of the training instances in each subset.
While in multi-instance learning paradigm, the training set is composed of bags
each containing many instances instead of individual instances in traditional
supervised learning paradigm. Thus, an intuitive way to fit RBF neural network
into multi-instance learning paradigm is to form clusters of bags instead of
clusters of instances in the first layer.

In order to form clusters of bags in the first layer, some kinds of distance
metrics should be utilized to measure the distances between bags and between
clusters. In this paper, two types of Hausdorff metric, i.e. maximal Hausdorff
distance [14] and minimal Hausdorff distance [31] are adopted to fulfill this

8

FLC(M, S, clu dist)

Inputs:

M – number of remaining clusters in the first layer;

S – training set {B1, B2, . . . , BN};
clu dist(∗, ∗) – distance measure between clusters of bags (which uses

bag dist(∗, ∗) to measure distance between bags);

Outputs:

Ci – clusters of training bags. (1 ≤ i ≤ M)

Process:

Begin with one cluster per training bag (C1 = {B1}, . . . , CN = {BN});
While there are more than M clusters

Merge the two clusters Ci, Cj which minimize clu dist(Ci, Cj);

Figure 4. Procedure for the first layer clustering of RBF-MIP.

objective, since Hausdorff metric has already shown its successful application
in multi-instance learning paradigm [31]. Formally, given two sets of objects
A = {a1, . . . , am} and B = {b1, . . . , bn}, the maximal and minimal Hausdorff
distances are defined as Eq.(1) and Eq.(2):

maxH(A,B) = Max{Max
a∈A

Min
b∈B

{dist(a, b)},Max
b∈B

Min
a∈A

{dist(b, a)}} (1)

minH(A,B) = Min
a∈A,b∈B

{dist(a, b)} (2)

As shown in the above equations, it is worth noting that both maxH(∗, ∗)
(maximal Hausdorff distance) and minH(∗, ∗) (minimal Hausdorff distance) are
capable of measuring distances between bags (sets of instances) and between
clusters (sets of bags). In detail, when both A and B are sets of numerical
vectors and function dist(∗, ∗) is Euclidean distance, maxH(∗, ∗) and minH(∗, ∗)
can be used to measure distance between sets of instances (bags). Interestingly,
on the other hand, when both A and B correspond to sets of bags and function
dist(∗, ∗) is either maxH(∗, ∗) or minH(∗, ∗), i.e. measuring distance between
bags using maximal or minimal Hausdorff distance, Eq.(1) and Eq.(2) can also
be utilized to calculate distance between sets of bags (clusters).

For example, let C1 = {B1, B2} and C2 = {B3} be two clusters of bags,
where B1 = {1, 3, 7}, B2 = {4, 9} and B3 = {6, 7, 11} are three different bags
each containing several one dimensional instances. If minimal Hausdorff dis-
tance is used to measure distance between bags and function dist(∗, ∗) shown in

9

Eq.(2) is Euclidean distance, then the distance between bags b1 and b2 can be
calculated as bag dist(B1, B2) = minH(B1, B2) = Min

a∈B1,b∈B2
|a − b| = Min{|1 −

4|, |1 − 9|, |3 − 4|, |3 − 9|, |7 − 4|, |7 − 9|} = 1. Similarly, bag dist(B1, B3) = 0
and bag dist(B2, B3) = 2 can also be verified by the readers. Furthermore,
when maximal Hausdorff distance is used to measure distance between clus-
ters and function dist(∗, ∗) shown in Eq.(1) is minimal Hausdorff distance, the
distance between clusters C1 and C2 can be calculated as clu dist(C1, C2) =
maxH(C1, C2) = Max{ Max

A∈C1
Min
B∈C2

{minH(A,B)}, Max
B∈C2

Min
A∈C1

{minH(B,A)} } =

Max{Max{0, 2},Max{0}} = Max{2, 0} = 2.
In the above example, the distance between bags is measured using minimal

Hausdorff metric while the distance between clusters is measured using maximal
Hausdorff metric. However, it is noteworthy that both Hausdorff metrics can be
utilized either as distance measure between bags or as distance measure between
clusters. Based on this, procedure for the first layer clustering of RBF-MIP is
shown in Figure 4, which is in fact the well-known agglomerative clustering al-
gorithm specifically adapted to the multi-instance learning framework.

4.2. second layer optimization

When the above stage of first layer clustering is accomplished, second layer
weights of an RBF-MIP neural network are obtained by the solution of a lin-
ear problem, where the involved procedure is very similar to the one used to
train traditional RBF neural network [6]. In detail, the second layer weights of
an RBF-MIP neural network is optimized by minimizing the following sum-of-
squares error function:

E =
1
2

N∑
n=1

c∑

k=1

{yk(Bn)− tnk}2 (3)

where tnk is the target value for output unit k when the network is presented
with input bag Bn. The corresponding actual output yk(Bn) is determined as
follows:

yk(Bn) =
M∑

j=0

wjkφj(Bn) (4)

where φ0 is an extra ’basis function’ with activation value fixed at 1. For the
case of Gaussian basis functions we have:

φj(Bn) = exp

(
− (clu dist({Bn}, Cj))2

2σ2
j

)
(1 ≤ j ≤ M) (5)

where clu dist({Bn}, Cj) calculates the distance between bag Bn and cluster Cj

by taking the input bag as a cluster of its own, while some form of bag dist(∗, ∗)

10

is used at the same time to measure distance between bags as shown in Figure 4.
The standard deviation σj is a parameter whose value controls the smoothness
property of the basis function φj . For traditional RBF neural network, one
heuristic approach to determine the standard deviations is to choose all the σj

to be equal and to be given by some multiple of the average distance between
the basis function centres [6]. Thus, in order to fit this heuristic approach into
multi-instance learning framework, each standard deviation used in the basis
functions of RBF-MIP is set to take the same value σ determined by the average
distance between every pair of clusters using Eq.(6), where µ is a scaling factor.

σ = µ×
(∑M−1

i=1

∑M
j=i+1 clu dist(Ci, Cj)

M(M − 1)/2

)
(6)

Note that the Gaussian basis functions in Eq.(5) are not normalized, since any
overall factors can be absorbed into the weights in Eq.(4) without loss of gen-
erality. Substituting Eq.(4) into Eq.(3), the sum-of-squares error function can
be rewritten as:

E =
1
2

N∑
n=1

c∑

k=1

M∑

j=0

wjkφj(Bn)− tnk

2

(7)

Differentiating this expression with respect to wjk and setting the derivative to
zero gives the normal equations for the least-squares problem in the following
form:

N∑
n=1

M∑

j′=0

wj′kφj′(Bn)− tnk

 φj(Bn) = 0 (0 ≤ j ≤ M, 1 ≤ k ≤ c) (8)

In order to find a solution to Eq.(8) it is convenient to write it in a matrix
notation to give:

(ΦTΦ)WT = ΦTT (9)

Here Φ has dimensions N × (M + 1) and elements φj(Bn), WT has dimensions
(M + 1) × c and elements wjk, and T has dimensions N × c and elements tnk .
The matrix ΦTΦ in Eq.(9) is a square matrix of dimensions (M +1)× (M +1).
Provided that it is non-singular we may invert it to obtain a solution to Eq.(9)
which can be written in the form:

WT = (ΦTΦ)−1ΦTT (10)

However, in practice, the direct solution of the normal equations can lead to
numerical difficulties due to the possibility of ΦTΦ being singular or nearly
singular. Fortunately, such problems can be conveniently resolved by using the
technique of singular value decomposition [26] to find a solution for the weights.

11

Thus, the second layer weights can be found by fast, linear matrix inversion
techniques.

It is worth noting that the appropriate parameter configuration of an RBF-
MIP neural network, i.e. M (the number of remaining clusters in the first
layer) and µ (the scaling factor), could be chosen based on the training data.
For instance, given a set of candidate configurations, the performance of each
configuration could be evaluated through performing ten-fold cross validation
on the training data or be estimated on a validation data set separated from
the training data, where the configuration with the best performance is chosen
and an RBF-MIP neural network is then trained on the entire training set using
this configuration to predict the labels of unseen bags.

5. Experiments

5.1. musk data sets

The Musk data is the only real-world benchmark test data for multi-instance
learning at present. The data is generated by Dietterich et al. in the way de-
scribed in Section 2. There are two data sets, i.e. Musk1 and Musk2, both
of which are publicly available from the UCI Machine Learning Repository [7].
Musk1 contains 47 positive bags and 45 negative bags, and the number of in-
stances contained in each bag ranges from 2 to 40. Musk2 contains 39 positive
bags and 63 negative bags, and the number of instances contained in each bag
ranges from 1 to 1,044. Detailed information on the Musk data is tabulated in
Table 1.

Table 1. The Musk data (72 molecules are shared in both data sets).

Data set Dim.
Bags

Total Musk Non-musk Instances
Instances per bag
Min Max Ave.

Musk1 166 92 47 45 476 2 40 5.17
Musk2 166 102 39 63 6,598 1 1,044 64.69

Leave-one-out test is performed on both data sets. In detail, for N bags, one
bag is used to test while the others are used to train an RBF-MIP neural network
in a loop of N iterations. In each iteration, in order to automatically determine
the parameter configuration of the algorithm, i.e. M (the number of remaining
clusters in the first layer) and µ (the scaling factor), the original training set
(denoted as ori set) is further divided into two portions. Concretely, a fraction of
ori set is randomly selected to form the validation set (denoted as vali set) while
the remaining portion of ori set (denoted as train set) is used for training. Thus,
given a set of candidate parameter configurations, RBF-MIP neural networks

12

with one output unit are trained using each candidate parameter configuration
on train set according to the two-stage procedure described in Section 4 and then
tested on the vali set. After that, the parameter configuration with which the
RBF-MIP neural network achieves the highest predictive accuracy on vali set
is selected and then employed to train a new RBF-MIP neural network on
the original training set ori set. For Musk1, 20% random fraction of ori set
is used to form the vali set while a parameter candidate set with 28 different
configurations is used, i.e. M ranges from 40 to 70 with an interval of 5 and µ

ranges from 0.3 to 0.6 with an interval of 0.1. For Musk2, 30% random fraction
of ori set is used to form the vali set while the parameter candidate set is the
same as that used in Musk1. The iterations are repeated in the way that each
bag in the data set has been used as the test bag once. When a trained RBF-
MIP network is used in prediction, a bag is positively labeled if and only if the
output of the network is not less than 0.5. At the end of the loop, the final
predictive accuracy is calculated as the total number of correctly labeled test
bags divided by N.

On both Musk1 and Musk2, ten times of leave-one-out tests are conducted
for each distance metric configuration of < bag dist(∗, ∗), clu dist(∗, ∗) >. The
corresponding average predictive accuracy and standard deviation is reported
in Table 2.

Table 2. The performance of RBF-MIP (%correct±std. deviation) on
the Musk data.

Distance metric Musk1 Musk2
< minH(∗, ∗),minH(∗, ∗) > 80.9± 3.0 85.0± 2.5

< minH(∗, ∗),maxH(∗, ∗) > 90.2± 2.6 88.0± 3.5

< maxH(∗, ∗),minH(∗, ∗) > 73.2± 1.9 80.5± 2.6

< maxH(∗, ∗),maxH(∗, ∗) > 77.3± 1.5 82.1± 1.6

As shown by Table 2, it is obvious that when the distance metric between
clusters is fixed (1st line vs. 3rd line, 2nd line vs. 4th line), using minH(∗, ∗)
(minimal Hausdorff distance) to measure distance between bags will result in
better performance than using maxH(∗, ∗) (maximal Hausdorff distance). On
the other hand, when the distance metric between bags is fixed (1st line vs.
2nd line, 3rd line vs. 4th line), using maxH(∗, ∗) to measure distance between
clusters will lead to better results than using minH(∗, ∗). RBF-MIP achieves
highest predictive accuracy on both Musk1 and Musk2 when minH(∗, ∗) and
maxH(∗, ∗) are utilized respectively to measure distances between bags and
between clusters. In the rest of this paper, all the reported experimental results
of RBF-MIP were obtained with this type of distance metric configuration.

13

Table 3. Comparison of the performance (%correct±std. devi-
ation) on the Musk1 data.

Algorithm Musk1 Evaluation
MI SVM [15] 92.4 LOO
Iterated-discrimAPR [12] 92.4 10CV
Citation-kNN [31] 92.4 LOO
RBF-MIP-PCA 91.3± 1.6 LOO
GFS elim-kde APR [12] 91.3 10CV
RBF-MIP 90.2± 2.6 LOO
GFS elim-countAPR [12] 90.2 10CV
Bayesian-kNN [31] 90.2 LOO
DiverseDensity [24] 88.9 10CV
BP-MIP-PCA [35] 88.0 LOO
RIPPER-MI [9] 88.0 N/A
mi-SVM [3] 87.4 10CV
EM-DD [33] 84.8 10CV
BP-MIP [37] 83.7 LOO
Relic [28] 83.7 10CV
MI-SVM [3] 77.9 10CV
MULTINST [4] 76.7± 4.3 10CV
Backpropagation [12] 75.0 10CV
C4.5 [12] 68.5 10CV

Table 3 and Table 4 compare the performance of RBF-MIP on both Musk
data sets with those reported in the literatures, where the value following “±”
shows the available standard deviation. Unfortunately, only very few litera-
tures have reported the standard deviations of their corresponding learning al-
gorithms. The empirical results shown in the tables have either been obtained
by multiple tenfold cross-validation runs (10CV) or by leave-one-out estimation
(LOO)1.

Note that Zhou and Zhang [38] have showed that ensembles of multi-instance
learners could achieve better results than single multi-instance learners. How-
ever, considering that RBF-MIP is a single multi-instance learner, the perfor-
mance of ensembles of multi-instance learners are not included in the tables for
fair comparison.

On the other hand, both Dietterich et al.’s APR algorithms and Maron and
Lozano-Pérez’s Diverse Density algorithm [24] employed some feature selection
mechanisms. Furthermore, the technique of principle component analysis (PCA)
[18] has also been used to improve the performance of BP-MIP [37], where
an enhanced version of this algorithm named BP-MIP-PCA [35] is proposed.

1As what has been pointed out by Andrews et al. [3], the EM-DD algorithm described in
[33] seems to use the test data to select the optimal solution obtained from multiple runs of
the algorithm. Thus, the experimental results of EM-DD shown in Tables 3 and 4 are the
results given by Andrews et al. [3].

14

Table 4. Comparison of the performance (%correct±std. devi-
ation) on the Musk2 data.

Algorithm Musk2 Evaluation
MI SVM [15] 92.2 LOO
RBF-MIP-PCA 90.1± 1.7 LOO
Iterated-discrimAPR [12] 89.2 10CV
RBF-MIP 88.0± 3.5 LOO
Relic [28] 87.3 10CV
Citation-kNN [31] 86.3 LOO
EM-DD [33] 84.9 10CV
MI-SVM [3] 84.3 10CV
MULTINST [4] 84.0± 3.7 10CV
mi-SVM [3] 83.6 10CV
BP-MIP-PCA [35] 83.3 LOO
DiverseDensity [24] 82.5 10CV
Bayesian-kNN [31] 82.4 LOO
BP-MIP [37] 80.4 LOO
GFS elim-kde APR [12] 80.4 10CV
RIPPER-MI [9] 77.0 N/A
GFS elim-countAPR [12] 75.7 10CV
Backpropagation [12] 67.7 10CV
C4.5 [12] 58.8 10CV

In this paper, PCA is also embedded into RBF-MIP to yield better results
on the Musk data sets. Briefly speaking, PCA is one of the most popular
methods for irrelevant feature reduction, which is usually employed to discover
the intrinsic dimensionality of a data set based on the covariance matrix R

computed from the data. The q eigenvectors corresponding to the q largest
eigenvalues of R define a linear transformation matrix T, which projects the
original p-dimensional space into a q-dimensional space in which the features
are uncorrelated. In this paper, for both Musk1 and Musk2, the original 166-
dimensional feature spaces are transformed into new 100-dimensional feature
spaces by PCA, where the experimental setups are the same as used above.
The performance of RBF-MIP combined with PCA (i.e. RBF-MIP-PCA) is
also reported in Table 3 and Table 4.

Tables 3 and 4 show that, RBF-MIP is among the top-ranked learning al-
gorithms on both Musk1 and Musk2. Especially, the performance of RBF-MIP
is significantly better than that of BP-MIP [37], i.e. another neural network
based multi-instance learner, on the Musk data. By incorporating the particu-
lar feature selection strategy of PCA, the performance of RBF-MIP is further
improved and RBF-MIP-PCA also outperforms BP-MIP-PCA [35]. In addition,
RBF-MIP has some advantages compared with other multi-instance learners.
For example, Dietterich et al.’s APR algorithms [12] were specially designed for

15

40 45 50 55 60 65 70 75 80
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

number of remaining clusters in the first layer

pr
ed

ic
ti

ve
 a

cc
ur

ac
y

mu=0.3

mu=0.4

mu=0.5

mu=0.6

Figure 5. The predictive accuracy of RBF-MIP on Musk1 changes as the
number of remaining clusters increasing.

the Musk data, while RBF-MIP is a general algorithm so that its applicability
is better than that of the APR algorithms. More important, through adopting
the same notations and algorithm description in Section 4 and then converting
the discrete-valued output of each bag into the corresponding real-valued one,
RBF-MIP is easy to be adapted for multi-instance regression problems.

Tables 3 and 4 also indicate that the performance of all the multi-instance
learning methods is better than that of Backpropagation and C4.5, which is
especially obvious on Musk2 that is more difficult to learn than Musk1. This
observation supports Dietterich et al.’s claim [12] that traditional supervised
learning methods can hardly work well on multi-instance problems because they
have not incorporated the characteristics of multi-instance learning.

It is noteworthy that, in multi-instance learning area, it is always the best
performance of each algorithm been reported when making comparison. For
instance, the experimental results of MI SVM [15] and Iterated-discrim APR
[12] reported in Tables 3 and 4 are the best performance of each algorithm out
of 26 and more than 50 different parameter configurations respectively. While
in Tables 3 and 4, the reported results of RBF-MIP are not obtained by eval-
uating many different parameter configurations and then picking the best one.
However, the parameters used to train RBF-MIP neural network, i.e. M (the
number of remaining clusters in the first layer) and µ (the scaling factor), are
automatically determined using the training data. Therefore, to make a fair
comparison, the performance of RBF-MIP is also evaluated under a number of

16

40 45 50 55 60 65 70 75 80
0.65

0.70

0.75

0.80

0.85

0.90

0.95

number of remaining clusters in the first layer

pr
ed

ic
ti

ve
 a

cc
ur

ac
y

mu=0.3

mu=0.4

mu=0.5

mu=0.6

Figure 6. The predictive accuracy of RBF-MIP on Musk2 changes as the
number of remaining clusters increasing.

(36) different parameter configurations on both data sets and the best perfor-
mance of RBF-MIP is recorded. In detail, M ranges from 40 to 80 with an
interval of 5 and µ ranges from 0.3 to 0.6 with an interval of 0.1. Figure 5
and Figure 6 illustrate the predictive accuracy of RBF-MIP with each parame-
ter configuration on Musk1 and Musk2 respectively, where leave-one-out test is
used to evaluate the performance. The horizontal axis indicates the number of
remaining clusters in the first layer. For Musk1 (as shown in Figure 5), the best
performance of the RBF-MIP neural network is 94.6% (the best performance on
Musk1 shown in Table 3 is 92.4%), which is obtained with 65 clusters remain-
ing in the first layer and the value of µ set to be 0.4. For Musk2 (as shown in
Figure 6), the best performance of the RBF-MIP neural network is 92.2% (the
best performance on Musk2 shown in Table 4 is also 92.2%), which is obtained
with 70 clusters remaining in the first layer and the value of µ set to be 0.3.
These results suggest that the rank of RBF-MIP among multi-instance learning
methods may be even higher than that was shown in Tables 3 and 4.

5.2. artificial data sets

In 2001, Amar et al. [2] presented a method for creating artificial multi-instance
data. This method generates an artificial receptor at first. Then, artificial
molecules with several instances per bag are generated, with each feature value
considered as the distance from the origin to the molecular surface when all
molecules are in the same orientation. Each feature has a scale factor to rep-

17

Table 5. Comparison of the predictive error (%error±std. deviation) on the artificial
data sets.

data set RBF-MIP BP-MIP Diverse Density Citation-kNN
LJ-160.166.1 5.1±0.7 16.3 23.9 4.3
LJ-160.166.1-S 1.1±0.7 18.5 0.0 0.0
LJ-80.166.1 6.6±0.8 18.5 N/A 8.6
LJ-80.166.1-S 18.5±1.2 18.5 53.3 0.0

Table 6. Comparison of the squared loss (loss±std. deviation) on the artificial data sets.

data set RBF-MIP BP-MIP Diverse Density Citation-kNN
LJ-160.166.1 0.0108±0.0001 0.0398 0.0852 0.0014
LJ-160.166.1-S 0.0075±0.0002 0.0731 0.0052 0.0022
LJ-80.166.1 0.0167±0.0005 0.0487 N/A 0.0109
LJ-80.166.1-S 0.0448±0.0042 0.0752 0.1116 0.0025

resent its importance in the binding process. The binding energies between
the artificial molecules and receptor are calculated based on the Lennard-Jones
potential for intermolecular interactions.

The artificial data sets are named as LJ-r.f.s where r is the number of relevant
features, f is the number of features, and s is the number of different scale factors
used for the relevant features. To partially mimic the Musk data, some data
sets only use labels that are not near 1/2 (indicated by the ‘S’ suffix) and all
scale factors for the relevant features are randomly selected between [0.9, 1].
Note that these data sets are mainly designed for multi-instance regression,
but they can also be used for multi-instance classification through rounding the
real-valued label to 0 or 1.

Leave-one-out test is performed on four artificial data sets, i.e. LJ-160.166.1,
LJ-160.166.1-S, LJ-80.166.1, and LJ-80.166.1-S. Each data set contains 92 bags.
In detail, for N bags, one bag is used to test while the others are used to train
an RBF-MIP neural network in a loop of N iterations. In each iteration, the
same mechanism used in the experimental procedure of the Musk data is also
used to automatically determine the parameter configuration. Concretely, for
each artificial data set, 20% random fraction of the original training set is used
to form the validation set while a parameter candidate set with 28 different
configurations is used, i.e. M ranges from 40 to 70 with an interval of 5 and
µ ranges from 0.3 to 0.6 with an interval of 0.1. The parameter configuration
with which the RBF-MIP neural network achieves the lowest squared loss on the
validation set is selected and then employed to train a new RBF-MIP neural
network on the original training set. The iterations are repeated in the way
that each bag in the data set has been used as the test bag once. At the end of

18

the loop, the final squared loss and predictive error are both calculated as the
average results of all test bags.

Ten times of leave-one-out tests are conducted for each artificial data set.
The performance of RBF-MIP is compared with those of BP-MIP, Diverse Den-
sity and Citation-kNN, where the performance of BP-MIP and those of Diverse
Density and Citation-kNN are reported in the literatures [37] and [2] respec-
tively. The average predictive error and squared loss are shown in Table 5 and
Table 6 respectively, where the value following “±” is the standard deviation
which is only available for RBF-MIP.

Tables 5 and 6 show that, with respect to both the predictive error and
squared loss, the performance of RBF-MIP is worse than that of Citation-
kNN [31], but it is apparently better than that of BP-MIP [37]. Furthermore,
compared with the performance of Diverse Density [24], that of RBF-MIP is
apparently better on LJ-160.166.1 and LJ-80.166.1-S, and it is comparable on
LJ-160.166.1-S. The above results reveal that, although RBF-MIP is worse than
Citation-kNN in multi-instance regression, it is better than BP-MIP and Diverse
Density in both multi-instance classification and multi-instance regression.

5.3. natural scene image database retrieval

In content-based image retrieval (CBIR), the query, i.e. the example image
posed by the user is actually ambiguous and difficult to be perceived. For in-
stance, suppose a user poses the image shown in Figure 7 and asks the system
to retrieval “similar” images from the database. This kind of query is rather
ambiguous since the query can be regarded as “river”, “mountains”, “clouds”,
“trees”, etc, while it is hard to ask the user precisely specify which one he or
she really wants. However, if the query can be processed as an image bag that
preserves original semantic meanings of the image, then the ambiguity can be
tackled by multi-instance learning techniques. Briefly speaking, the query im-
ages posed by the user are firstly transformed into corresponding positive and
negative bags by certain image bag generator. Then the system can learn what
the user requires (i.e. the target concept) from those training bags with multi-
instance learning algorithms. Finally, the images in the database are sorted
according to the learned target concept and returned to the user by the system.

Several multi-instance learning based CBIR systems have been developed
[25, 32, 34], where many image bag generators have been proposed and sev-
eral multi-instance learning algorithms such as Diverse Density and EM-DD
have been used to learn and retrieval images from the database. In this paper,
the performance of RBF-MIP is further evaluated by retrieving images from a
natural scene image database.

19

Figure 7. A sample query image.

An image database consisting of 2,000 images is used in the experiments,
which includes 400 images from each of the five natural scene image types:
desert, mountains, sea, sunset, and trees. Each image is transformed into an
image bag by the popular SBN [25] (i.e. single blob with neighbors) image
bag generator2. In detail, each image is smoothed by a Gaussian filter and
subsampled to an 8×8 matrix of color blobs where each blob is a 2×2 set of
pixels within the 8×8 matrix. An SBN is defined as the combination of a single
blob with its four neighboring blobs (up, down, left, right). The sub-image is
described as a 15-dimensional vector, where the first three attributes represent
the mean R, G, B values of the central blob and the remaining twelve attributes
correspond to the differences in mean color values between the central blob
and other four neighboring blobs respectively. Therefore, each image bag is
represented by a collection of nine 15-dimensional feature vectors obtained by
using each of the nine blobs not along the border as the central blob.

A potential training set of 400 images is created by randomly choosing 80
images from each of the five image types. The remaining images constitute
a test set consisting of 1,600 images, 320 from each of the five image types.
Separating the potential training set from the test set is to ensure that results
of using various multi-instance learning algorithms could be compared fairly. In
this paper, each image type corresponds to a concept class to be learned. For
each image type, an initial training set is created by randomly picking several
positive examples of the target concept and several negative examples, all from
the potential training set. SBN is used to generate image bags and the concept
is learned by some specific multi-instance learning algorithm. After the concept

2Note that the purpose of the experiments is to compare the performance of different
multi-instance learning algorithms instead of testing the effectiveness of different image bag
generators, thus only one image bag generator is used for all comparing algorithms.

20

Figure 8. A sample run of RBF-MIP (combined with SBN) for retrieving mountains us-
ing training scheme 5p5n. (a) User-selected positive examples; (b) User-selected negative
examples; (c) Final retrieval from test set (top 15 images).

has been learned, the 1,600 images in the test set are sorted based on the learned
concept. Two different training schemes are used: 3p3n that picks 3 positive
examples and 3 negative examples to form the initial training set; and 5p5n that
picks 5 positive examples and 5 negative examples to form the initial training
set. Figure 8 shows a sample run of RBF-MIP (combined with SBN) using
training scheme 5p5n where the target concept is mountains.

In this paper, the retrieval performance of RBF-MIP is compared with those
of BP-MIP [37], Diverse Density [24] and EM-DD [33]3. For the problem of
CBIR, the training set is too small (6 examples for 3p3n and 10 examples
for 5p5n) to effectively estimate the parameter configuration of RBF-MIP as in
Section 5.1 and 5.2. Thus, in the following experiments, the number of remaining
clusters M in the first layer of RBF-MIP is simply set to be the same number
of training examples, i.e. by taking each training example as a cluster of its

3For RBF-MIP and BP-MIP, the test images are sorted based on the maximum output of
any of the image’s instances on the trained neural networks; While for Diverse Density and
EM-DD, the test images are sorted based on the minimum distance of any of the image’s
instances from the learned concept point.

21

Figure 9. Precision-recall curves for training scheme 3p3n, where the curve of each algorithm
is the averaged results of five different image types each with 10 runs of experiments.

Figure 10. Precision-recall curves for training scheme 5p5n, where the curve of each algorithm
is the averaged results of five different image types each with 10 runs of experiments.

own. The scaling factor µ is fixed to be 0.3. For BP-MIP, the number of hidden
neurons is set to be 15, which equals the dimensionality of each instance in the
bags. For Diverse Density and EM-DD, the default parameters are adopted.

On way to evaluate image retrieval performance is to measure the precision
and recall. Precision is the ratio of the number of correctly retrieved images to

22

Table 7. Precision of each comparing algorithm on the the top 200 retrieved images with
training scheme 3p3n.

Image type RBF-MIP Diverse Density EM-DD BP-MIP
desert .362±.130 .333±.145 .269±.099 .265±.094
mountains .381±.056 .393±.090 .338±.078 .308±.118
sea .249±.066 .285±.046 .236±.051 .270±.088
sunset .511±.083 .445±.104 .426±.098 .433±.145
trees .469±.113 .379±.124 .366±.066 .116±.087
average .394±.090 .367±.102 .327±.079 .278±.107

Table 8. Recall of each comparing algorithm on the the top 200 retrieved images with
training scheme 3p3n.

Image type RBF-MIP Diverse Density EM-DD BP-MIP
desert .226±.081 .208±.091 .168±.062 .165±.059
mountains .238±.035 .245±.056 .211±.049 .192±.074
sea .156±.041 .178±.029 .147±.032 .168±.055
sunset .319±.052 .278±.065 .266±.061 .271±.090
trees .293±.071 .237±.077 .229±.041 .073±.055
average .246±.056 .229±.064 .204±.049 .174±.067

the number of all images retrieved so far. Recall is the ratio of the number of
correctly retrieved images to the total number of correct images in the test set.
Given a specific training scheme, for each image type, 10 runs of experiments
are performed for each of the four multi-instance learning algorithms. Figure
9 gives the precision-recall curves for training scheme 3p3n, where precision is
plotted against recall as the number of retrieved images increases. The curve
of each algorithm is the averaged results of five different image types each with
10 runs of experiments. The higher the precision-recall curve, the better the
performance. Similarly, Figure 10 gives the precision-recall curves for training
scheme 5p5n.

For training scheme 3p3n (as shown in Figure 9), the performance of RBF-
MIP is better than those of Diverse Density, EM-DD and BP-MIP. For training
scheme 5p5n (as shown in Figure 10), RBF-MIP is comparable to Diverse Den-
sity and both of them outperform EM-DD and BP-MIP. For image database
retrieval, in most cases, the users may only be interested in the top portion of
the images returned by the system which correspond to the beginning of the
precision-recall curve. Therefore, Table 7 and Table 8 report the precision and
recall of each comparing algorithm on the top 200 retrieved images with training
scheme 3p3n respectively, where the number following “±” is the corresponding
standard deviation. Similarly, Table 9 and 10 report the precision and recall of
each comparing algorithm on the top 200 retrieved images with training scheme
5p5n respectively.

23

Table 9. Precision of each comparing algorithm on the the top 200 retrieved images with
training scheme 5p5n.

Image type RBF-MIP Diverse Density EM-DD BP-MIP
desert .391±.092 .320±.157 .290±.079 .245±.126
mountains .427±.057 .389±.125 .315±.063 .408±.085
sea .316±.041 .309±.047 .282±.044 .349±.075
sunset .506±.137 .642±.109 .444±.118 .534±.188
trees .521±.109 .379±.151 .402±.124 .116±.066
average .432±.087 .407±.118 .346±.086 .330±.108

Table 10. Recall of each comparing algorithm on the the top 200 retrieved images with
training scheme 5p5n.

Image type RBF-MIP Diverse Density EM-DD BP-MIP
desert .244±.058 .200±.098 .181±.049 .153±.079
mountains .267±.036 .243±.078 .197±.039 .255±.053
sea .197±.025 .193±.030 .176±.028 .218±.047
sunset .316±.086 .401±.068 .277±.074 .334±.117
trees .325±.068 .237±.095 .251±.077 .072±.041
average .270±.055 .255±.074 .216±.054 .206±.067

Table 7 and Table 8 show that, in terms of both precision and recall, RBF-
MIP outperforms EM-DD on all image types, outperforms BP-MIP on all image
types except sea, and outperforms Diverse Density on desert, sunset and trees,
but is inferior to Diverse Density on mountains and sea. On the average (as
shown in the last line of Table 7 and Table 8), RBF-MIP performs slightly
better than Diverse Density and both of them significantly outperforms EM-DD
and BP-MIP. Table 9 and Table 10 show that, in terms of both precision and
recall, RBF-MIP outperforms EM-DD on all image types, outperforms BP-MIP
on desert, mountains and trees, but is inferior to BP-MIP on sea and sunset,
and outperforms Diverse Density on all image types except sunset. On the
average (as shown in the last line of Table 9 and Table 10), RBF-MIP performs
slightly better than Diverse Density and both of them significantly outperforms
EM-DD and BP-MIP. The above results indicate that, besides multi-instance
classification and multi-instance regression, RBF-MIP could also work well with
application to content-based image retrieval.

6. Conclusion and Future Work

In this paper, a multi-instance neural network algorithm named RBF-MIP is
proposed. It is derived from the traditional RBF method through employing
a particular two-stage training procedure, where its first layer is composed of
clusters of bags formed by merging training bags agglomeratively and its second

24

layer weights are optimized by minimizing a sum-of-squares function and worked
out through singular value decomposition. Experiments on the Musk data sets,
several artificial data sets and natural scene image database retrieval show that
RBF-MIP is among the top-ranked learning algorithms on multi-instance prob-
lems.

In the trained RBF-MIP neural networks, there exist some clusters contain-
ing only one bag when many clusters are remained in the first layer. Inves-
tigating some appropriate methods to eliminate these “trivial” clusters is an
interesting issue for future work.

Furthermore, recent research has shown that neural network ensemble could
significantly improve the generalization ability of neural network based learning
systems, which has become a hot topic in both machine learning and neural
network communities [36]. Besides, Zhou and Zhang [38] have proposed to build
ensembles of several multi-instance learners to solve multi-instance problems,
and shown that the investigated multi-instance learners can be enhanced by
utilizing ensemble learning paradigms. So, it is interesting to see if better results
could be obtained with ensembles of RBF-MIP neural networks.

Acknowledgements

The comments and suggestions from the anonymous reviewers greatly improved
this paper. This work was supported by the National Science Foundation of
China under the Grant No. 60473046, the Foundation for the Author of National
Excellent Doctoral Dissertation of China under the Grant No. 200343, and the
National 973 Fundamental Research Program of China under the Grant No.
2002CB312002.

References

[1] Alphonse, E. and Matwin, S.: Filtering multi-instance problems to reduce dimen-
sionality in relational learning, Journal of Intelligent Information Systems 22(1)
(2004), 23-40.

[2] Amar, R. A., Dooly, D. R., Goldman, S. A. and Zhang, Q.: Multiple-
instance learning of real-valued data, In: Proceedings of the 18th Interna-
tional Conference on Machine Learning, pp. 3-10, Williamstown, MA, 2001.
[http://www.cs.wustl.edu/˜sg/multi-inst-data]

[3] Andrews, S., Tsochantaridis, I. and Hofmann, T.: Support vector machines for
multiple-instance learning, In: S. Becker, S. Thrun and K. Obermayer (eds.)
Advances in Neural Information Processing Systems 15, pp. 561-568, Cambridge,
MA: MIT Press, 2003.

25

[4] Auer, P.: On learning from multi-instance examples: empirical evaluation of a
theoretical approach, In: Proceedings of the 14th International Conference on
Machine Learning, pp. 21-29, Nashville, TN, 1997.

[5] Auer, P., Long, P. M. and Srinivasan, A.: Approximating hyper-rectangles: learn-
ing and pseudo-random sets, Journal of Computer and System Sciences 57(3)
(1998), 376-388.

[6] Bishop, C. M.: Neural Networks for Pattern Recognition, New York: Oxford
University Press, 1995.

[7] Blake, C., Keogh, E. and Merz, C. J.: UCI repository of machine learning
databases. Department of Information and Computer Science, University of Cal-
ifornia, Irvine, CA, 1998. [http://www.ics.uci.edu/ mlearn/MLRepository.html]

[8] Blum, A. and Kalai, A.: A note on learning from multiple-instance examples,
Machine Learning 30(1) (1998), 23-29.

[9] Chevaleyre, Y. and Zucker, J.-D.: Solving multiple-instance and multiple-part
learning problems with decision trees and decision rules. Application to the mu-
tagenesis problem, In: E. Stroulia and S. Matwin (eds.) Lecture Notes in Artificial
Intelligence 2056, pp. 204-214, Berlin: Springer, 2001.

[10] Dempster, A. P., Laird, N. M. and Rubin, D. B.: Maximum likelihood from
incomplete data via the EM algorithm, Journal of the Royal Statistics Society,
Series B 39(1) (1977), 1-38.

[11] De Raedt, L.: Attribute-value learning versus inductive logic programming: the
missing links, In: D. Page (ed.) Lecture Notes in Artificial Intelligence 1446, pp.
1-8, Berlin: Springer, 1998.

[12] Dietterich, T. G., Lathrop, R. H. and Lozano-Pérez, T.: Solving the multiple-
instance problem with axis-parallel rectangles, Artificial Intelligence 89(1-2)
(1997), 31-71.

[13] Dooly, D. R., Goldman, S. A. and Kwek, S. S.: Real-valued multiple-instance
learning with queries, In: N. Abe, R. Khardon and T. Zeugmann (eds.) Lecture
Notes in Artificial Intelligence 2225, pp. 167-180, Berlin: Springer, 2001.

[14] Edgar, G. A.: Measure, Topology, and Fractal Geometry, 3rd print, Berlin:
Springer-Verlag, 1995.

[15] Gärtner, T., Flach, P. A., Kowalczyk, A. and Smola, A. J.: Multi-instance kernels,
In: Proceedings of the 19th International Conference on Machine Learning, pp.
179-186, Sydney, Australia, 2002.

[16] Goldman, S. A., Kwek, S. S. and Scott, S. D.: Agnostic learning of geometric
patterns, Journal of Computer and System Sciences 62(1) (2001), 123-151.

[17] Goldman, S. A. and Scott, S. D.: Multiple-instance learning of real-valued geo-
metric patterns, Annals of Mathematics and Artificial Intelligence 39(3) (2003),
259-290.

[18] Jollife, I. T.: Principle Component Analysis, New York: Springer-Verlag, 1986.

[19] Kearns, M. J.: Efficient noise-tolerant learning from statistical queries, In: Pro-
ceedings of the 25th Annual ACM Symposium on Theory of Computing, pp. 392-
401, San Diego, CA, 1993.

26

[20] Kearns, M. J. and Schapire, R. E.: Efficient distribution-free learning of proba-
bilistic concepts, Journal of Computer and System Sciences 48(3) (1994), 464-
497.

[21] Lindsay, R., Buchanan, B., Feigenbaum, E. and Lederberg, J.: Applications of
Artificial Intelligence to Organic Chemistry: The DENDRAL Project, New York:
McGraw-Hill, 1980.

[22] Long, P. M. and Tan, L.: PAC learning axis-aligned rectangles with respect to
product distribution from multiple-instance examples, Machine Learning 30(1)
(1998), 7-21.

[23] Maron, O.: Learning from Ambiguity, PhD dissertation, Department of Electron-
ical Engineering and Computer Science, MIT, Cambridge, MA, Jun. 1998.

[24] Maron, O. and Lozano-Pérez, T.: A framework for multiple-instance learning, In:
M. I. Jordan, M. J. Kearns and S. A. Solla (eds.) Advances in Neural Information
Processing Systems 10, pp. 570-576, Cambridge, MA: MIT Press, 1998.

[25] Maron, O. and Ratan, A. L.: Multiple-instance learning for natural scene classi-
fication, In: Proceedings of the 15th International Conference on Machine Learn-
ing, pp. 341-349, Madison, WI, 1998.

[26] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: Numerical
Recipes in C: the Art of Scientific Computing, 2nd edition, New York: Cambridge
University Press, 1992.

[27] Ray, S. and Page, D.: Multiple instance regression, In: Proceedings of the 18th
International Conference on Machine Learning, pp. 425-432, Williamstown, MA,
2001.

[28] Ruffo, G.: Learning single and multiple decision trees for security applications,
PhD dissertation, Department of Computer Science, University of Turin, Italy,
2000.

[29] Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: Learning internal represen-
tations by error propagation, In: D. E. Rumelhart and J. L. McClelland (eds.)
Parallel Distributed Processing: explorations in the microstructure of cognition,
vol.1, pp. 318-362, Cambridge, MA: MIT Press, 1986.

[30] Sebag, M. and Rouveirol, C.: Tractable induction and classification in first order
logic, In: Proceedings of the 15th International Joint Conference on Artificial
Intelligence, pp. 888-893, Nagoya, Japan, 1997.

[31] Wang, J. and Zucker, J.-D.: Solving the multiple-instance problem: a lazy learn-
ing approach, In: Proceedings of the 17th International Conference on Machine
Learning, pp. 1119-1125, San Francisco, CA, 2000.

[32] Yang, C. and Lozano- Pérez, T.: Image database retrieval with multiple-instance
learning techniques, In: Proceedings of the 16th International Conference on Data
Engineering, pp. 233-243, San Diego, CA, 2000.

[33] Zhang, Q. and Goldman, S. A.: EM-DD: an improved multiple-instance learning
technique, In: T. G. Dietterich, S. Becker and Z. Ghahramani (eds.) Advances in
Neural Information Processing Systems 14, pp. 1073-1080, Cambridge, MA: MIT
Press, 2002.

27

[34] Zhang, Q., Yu, W., Goldman, S. A. and Fritts, J. E.: Content-based image re-
trieval using multiple-instance learning, In: Proceedings of the 19th International
Conference on Machine Learning, pp. 682-689, Sydney, Australia, 2002.

[35] Zhang, M.-L. and Zhou, Z.-H.: Improve multi-instance neural network through
feature selection. Neural Processing Letters 19(1) (2004), 1-10.

[36] Zhou, Z.-H., Wu, J. and Tang, W.: Ensembling neural networks: many could be
better than all, Artificial Intelligence 137(1-2) (2002), 239-263.

[37] Zhou, Z.-H. and Zhang, M.-L.: Neural networks for multi-instance learning, Tech-
nical Report, AI Lab, Computer Science & Technology Department, Nanjing
University, China, Aug. 2002.

[38] Zhou, Z.-H. and Zhang, M.-L.: Ensembles of multi-instance learners, In: N.
Lavrač, D. Gamberger, H. Blockeel and L. Todorovski (eds.) Lecture Notes in
Artificial Intelligence 2837, pp. 492-502, Berlin: Springer-Verlag, 2003.

[39] Zucker, J.-D. and Ganascia, J.-G.: Changes of representation for efficient learning
in structural domains, In: Proceedings of the 13th International Conference on
Machine Learning, pp. 543-551, Bary, Italy, 1996.

[40] Zucker, J.-D. and Ganascia, J.-G.: Learning structurally indeterminate clauses,

In: D. Page (ed.) Lecture Notes in Artificial Intelligence 1446, pp. 235-244, Berlin:

Springer, 1998.

28

