Mining Data Streams (Part 2)
More algorithms for streams:

1. Filtering a data stream: Bloom filters
 - Select elements with property x from stream

2. Counting distinct elements: Flajolet-Martin
 - Number of distinct elements in the last k elements of the stream

3. Estimating moments: AMS method
 - Estimate std. dev. of last k elements

4. Counting frequent items
(1) Filtering Data Streams
Each element of data stream is a tuple
Given a list of keys S
Determine which tuples of stream are in S

Obvious solution: Hash table
- But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Example: Email spam filtering

- We know 1 billion “good” email addresses
- If an email comes from one of these, it is NOT spam

Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user’s interest
First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a **bit array B** of n bits, initially all **0s**
- Choose a **hash function h** with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to **1**, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to **1**
 - Output a if $B[h(a)] == 1$
First Cut Solution (2)

- **Creates false positives but no false negatives**
 - If the item is in S we surely output it, if not we may still output it

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item.
It hashes to a bucket set to 0 so it is surely not in S.
First Cut Solution (3)

- $|S| = 1$ billion email addresses
- $|B| = 1$GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the bit set to 1, so it always gets through (no false negatives)

- Approximately $1/8$ of the bits are set to 1, so about $1/8^{th}$ of the addresses not in S get through to the output (false positives)
 - Actually, less than $1/8^{th}$, because more than one address might hash to the same bit
More accurate analysis for the number of false positives

Consider: If we throw \(m \) darts into \(n \) equally likely targets, what is the probability that a target gets at least one dart?

In our case:
- **Targets** = bits/buckets
- **Darts** = hash values of items
We have \(m \) darts, \(n \) targets

What is the probability that a target gets at least one dart?

\[
1 - (1 - 1/n)
\]

\[
1 - e^{-m/n}
\]

Equals \(1/e \)
as \(n \to \infty \)

Probability some target \(X \) not hit by a dart

Probability at least one dart hits target \(X \)

Equivalent
Analysis: Throwing Darts – (3)

- Fraction of 1s in the array B $=$
 probability of false positive $=$ $1 - e^{-m/n}$

- Example: 10^9 darts, 8×10^9 targets
 - Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: $1/8 = 0.125$
Consider: $|S| = m$, $|B| = n$

Use k independent hash functions h_1, \ldots, h_k

Initialization:

- Set B to all 0s
- Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$)

Run-time:

- When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x
Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing $k \cdot m$ darts at n targets
 - So fraction of 1s is $(1 - e^{-km/n})$

- But we have k independent hash functions

- So, false positive probability = $(1 - e^{-km/n})^k$
Bloom Filter – Analysis (2)

- \(m = 1 \) billion, \(n = 8 \) billion
 - \(k = 1: (1 - e^{-1/8}) = 0.1175 \)
 - \(k = 2: (1 - e^{-1/4})^2 = 0.0493 \)

- What happens as we keep increasing \(k \)?

- “Optimal” value of \(k \): \(n/m \ln(2) \)
 - In our case: Optimal \(k = 8 \ln(2) = 5.54 \approx 6 \)
Bloom Filter: Wrap-up

- **Bloom filters guarantee no false negatives, and use limited memory**
 - Great for pre-processing before more expensive checks

- **Suitable for hardware implementation**
 - Hash function computations can be parallelized
(2) Counting Distinct Elements
Problem:
- Data stream consists of a universe of elements chosen from a set of size N.
- Maintain a count of the number of distinct elements seen so far.

Obvious approach:
Maintain the set of elements seen so far.
- That is, keep a hash table of all the distinct elements seen so far.
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large
Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

- For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a) =$ position of first 1 counting from the right
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$

- Record $R =$ the maximum $r(a)$ seen
 - $R = \max_a r(a)$, over all the items a seen so far

- Estimated number of distinct elements $= 2^R$
Why It Works: Intuition

- **Very rough & heuristic intuition why Flajolet-Martin works:**
 - $h(a)$ hashes a with **equal prob.** to any of N values
 - Then $h(a)$ is a sequence of $\log_2 N$ bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen **about 4** distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r
Now we show why M-F works

Formally, we will show that probability of NOT finding a tail of r zeros:

- Goes to 0 if $m \gg 2^r$
- Goes to 1 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream
Why It Works: More formally

- What if the probability that a given $h(a)$ ends in at least r zeros is 2^{-r}
 - $h(a)$ hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2^{-r}
- The, the probability of NOT seeing a tail of length r among m elements:

 $$ (1 - 2^{-r})^m $$

 - Prob. all end in fewer than r zeros.
 - Prob. that given $h(a)$ ends in fewer than r zeros.
Note: $(1 - 2^{-r})^m = (1 - 2^{-r})^{2r(m2^{-r})} \approx e^{-m2^{-r}}$

Prob. of NOT finding a tail of length r is:

- If $m << 2^r$, then prob. tends to 1
 - $(1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \to 0$
 - So, the probability of finding a tail of length r tends to 0

- If $m >> 2^r$, then prob. tends to 0
 - $(1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0$ as $m/2^r \to \infty$
 - So, the probability of finding a tail of length r tends to 1

Thus, 2^R will almost always be around $m!$
Why It Doesn’t Work

- \(\mathbb{E}[2^R] \) is actually infinite
 - Probability halves when \(R \rightarrow R+1 \), but value doubles
- Workaround involves using many hash functions \(h_i \) and getting many samples of \(R_i \)
- How are samples \(R_i \) combined?
 - Average? What if one very large value \(2^{R_i} \)?
 - Median? All estimates are a power of 2
- Solution:
 - Partition your samples into small groups
 - Take the average of groups
 - Then take the median of the averages
(3) Computing Moments
Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- Let m_i be the number of times value i occurs in the stream
- The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$
Special Cases

\[\sum_{i \in A} (m_i)^k \]

- **0\(^{th}\) moment** = number of distinct elements
 - The problem just considered
- **1\(^{st}\) moment** = count of the numbers of elements = length of the stream
 - Easy to compute
- **2\(^{nd}\) moment** = *surprise number* \(S \) = a measure of how uneven the distribution is
Example: Surprise Number

- Stream of length 100
- 11 distinct values

Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Surprise $S = 910$

Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1
Surprise $S = 8,110$
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
How to set \(X.val \) and \(X.el \)?

- Assume stream has length \(n \) (we relax this later)
- Pick some random time \(t \) \((t<n)\) to start, so that any time is equally likely
- Let at time \(t \) the stream have item \(i \). We set \(X.el = i \)
- Then we maintain count \(c \) \((X.val = c)\) of the number of \(i \)s in the stream starting from the chosen time \(t \)
- Then the estimate of the 2\(^{nd} \) moment \((\sum_i m_i^2)\) is:
 \[
 S = f(X) = n \left(2 \cdot c - 1\right)
 \]
- Note, we keep track of multiple \(Xs \), \((X_1, X_2, \ldots X_k)\) and our final estimate will be \(S = 1/k \sum_j f(X_j) \)
2nd moment is \(S = \sum_i m_i^2 \)

- \(c_t \) ... number of times record at time \(t \) appears from that time on \((c_1=m_a, c_2=m_a-1, c_3=m_b)\)

\[
E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)
\]

\[
= \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1)
\]

\(m_i \) ... total count of item \(i \) in the stream (we are assuming stream has length \(n \))

Group times by the value seen

Time \(t \) when the last \(i \) is seen \((c_t=1)\)

Time \(t \) when the penultimate \(i \) is seen \((c_t=2)\)

Time \(t \) when the first \(i \) is seen \((c_t=m_i)\)
$E[f(X)] = \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1)$

- Little side calculation: $(1 + 3 + 5 + \cdots + 2m_i - 1) = \sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2$

- Then $E[f(X)] = \frac{1}{n} \sum_i n (m_i)^2$

- So, $E[f(X)] = \sum_i (m_i)^2 = S$

- We have the second moment (in expectation)!
For estimating k^{th} moment we essentially use the same algorithm but change the estimate:

- For $k=2$ we used $n \cdot (2 \cdot c - 1)$
- For $k=3$ we use: $n \cdot (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

Why?

- For $k=2$: Remember we had $1 + 3 + 5 + \cdots + 2m_i - 1$ and we showed terms $2c-1$ (for $c=1,\ldots,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
- For $k=3$: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$
- Generally: Estimate $= n \cdot (c^k - (c - 1)^k)$
Combining Samples

- **In practice:**
 - Compute \(f(X) = n(2c - 1) \) for as many variables \(X \) as you can fit in memory
 - Average them in groups
 - Take median of averages

- **Problem: Streams never end**
 - We assumed there was a number \(n \), the number of positions in the stream
 - But real streams go on forever, so \(n \) is a variable – the number of inputs seen so far
Streams Never End: Fixups

1. The variables \(X \) have \(n \) as a factor – keep \(n \) separately; just hold the count in \(X \).

2. Suppose we can only store \(k \) counts. We must throw some \(X \)s out as time goes on:

 - **Objective:** Each starting time \(t \) is selected with probability \(k/n \).
 - **Solution:** (fixed-size sampling!)
 - Choose the first \(k \) times for \(k \) variables.
 - When the \(n^{th} \) element arrives (\(n > k \)), choose it with probability \(k/n \).
 - If you choose it, throw one of the previously stored variables \(X \) out, with equal probability.
Counting Itemsets
New Problem: Given a stream, which items appear more than s times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- 1 = item present; 0 = not present
- Use DGIM to estimate counts of 1s for all items
In principle, you could count frequent pairs or even larger sets the same way

- One stream per itemset

Drawbacks:

- Only approximate
- Number of itemsets is way too big
Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)

- What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream

If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:

$$\sum_{i=1}^{t} a_i (1 - c)^{t-i}$$

- c is a constant, presumably tiny, like 10^{-6} or 10^{-9}

When new a_{t+1} arrives:

Multiply current sum by $(1-c)$ and add a_{t+1}
If each \(a_i \) is an “item” we can compute the characteristic function of each possible item \(x \) as an Exponentially Decaying Window.

That is: \(\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i} \)

where \(\delta_i = 1 \) if \(a_i = x \), and 0 otherwise.

Imagine that for each item \(x \) we have a binary stream (1 if \(x \) appears, 0 if \(x \) does not appear).

New item \(x \) arrives:
- Multiply all counts by \((1-c) \)
- Add +1 to count for element \(x \)

Call this sum the “weight” of item \(x \).
Important property: Sum over all weights

$$\sum_t (1 - c)^t \text{ is } 1/[1 - (1 - c)] = 1/c$$
What are “currently” most popular movies?

Suppose we want to find movies of weight > ½

- **Important property:** Sum over all weights
 \[\sum_t (1 - c)^t \text{ is } \frac{1}{[1 - (1 - c)]} = \frac{1}{c} \]

- **Thus:**
 - There cannot be more than \(\frac{2}{c} \) movies with weight of ½ or more

- **So,** \(\frac{2}{c} \) is a limit on the number of movies being counted at any time
Extension to Itemsets

- Count (some) itemsets in an E.D.W.
 - What are currently “hot” itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory
 - When a basket B comes in:
 - Multiply all counts by \((1-c)\)
 - For uncounted items in B, create new count
 - Add 1 to count of any item in B and to any itemset contained in B that is already being counted
 - Drop counts < \(\frac{1}{2}\)
 - Initiate new counts (next slide)
Initiation of New Counts

- Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B
 - Intuitively: If all subsets of S are being counted, this means they are “frequent/hot” and thus S has a potential to be “hot”
- Example:
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
Counts for single items < \(\frac{2}{c} \cdot (\text{avg. number of items in a basket}) \)

Counts for larger itemsets = ??

But we are conservative about starting counts of large sets

- If we counted every set we saw, one basket of 20 items would initiate 1M counts