Recommender Systems: Content-based Systems & Collaborative Filtering
Example: Recommender Systems

- **Customer X**
 - Buys Metallica CD
 - Buys Megadeth CD

- **Customer Y**
 - Does search on Metallica
 - Recommender system suggests Megadeth from data collected about customer X
Recommendations

Examples:
- Amazon.com
- Pandora
- StumbleUpon
- del.icio.us
- Netflix
- Movielens
- Last.fm
- YouTube
- Google News
- XBox Live

Search → Recommendations

Items

Products, web sites, blogs, news items, …
From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters, ...

- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance

- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: http://www.wired.com/wired/archive/12.10/tail.html
The Long Tail

THE DOCUMENTARY NICHE GETS RICHER

More than 40,000 documentaries have been released, according to the Internet Movie Database. Of those, Amazon.com carries 40 percent, Netflix stocks 3 percent, and the average Blockbuster just 2 percent.

Sources: Amazon.com; Internet Movie Database; Netflix; Wired research

Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks

Source: Chris Anderson (2004)
Physical vs. Online

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!
Types of Recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of “essential” items

- Simple aggregates
 - Top 10, Most Popular, Recent Uploads

- Tailored to individual users
 - Amazon, Netflix, ...
Formal Model

- \(X = \text{set of Customers} \)
- \(S = \text{set of Items} \)

Utility function \(u: X \times S \rightarrow R \)

- \(R = \text{set of ratings} \)
- \(R \) is a totally ordered set
- e.g., 0-5 stars, real number in \([0,1]\)
Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Pirates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td>1</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jure Leskovec, Stanford C246: Mining Massive Datasets
Key Problems

- **(1) Gathering “known” ratings for matrix**
 - How to collect the data in the utility matrix

- **(2) Extrapolate unknown ratings from the known ones**
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don’t like but what you like

- **(3) Evaluating extrapolation methods**
 - How to measure success/performance of recommendation methods
(1) Gathering Ratings

- **Explicit**
 - Ask people to rate items
 - Doesn’t work well in practice – people can’t be bothered

- **Implicit**
 - Learn ratings from user actions
 - E.g., purchase implies high rating
 - What about low ratings?
Key problem: matrix U is sparse
- Most people have not rated most items
- Cold start:
 - New items have no ratings
 - New users have no history

Three approaches to recommender systems:
- 1) Content-based
- 2) Collaborative
- 3) Latent factor based
Content-based Recommender Systems
Content-based Recommendations

- **Main idea:** Recommend items to customer x similar to previous items rated highly by x

Example:

- **Movie recommendations**
 - Recommend movies with same actor(s), director, genre, ...
- **Websites, blogs, news**
 - Recommend other sites with “similar” content
Plan of Action

- Item profiles
 - Red Circles
 - Triangles

- User profile
- match
 - likes
 - recommend
 - build
For each item, create an item profile

Profile is a set (vector) of features

- **Movies**: author, title, actor, director, ...
- **Text**: Set of “important” words in document

How to pick important features?

- Usual heuristic from text mining is **TF-IDF** (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item
Sidenote: TF-IDF

\[f_{ij} = \text{frequency of term (feature) } i \text{ in doc (item) } j \]

\[TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}} \]

\[n_i = \text{number of docs that mention term } i \]

\[N = \text{total number of docs} \]

\[IDF_i = \log \frac{N}{n_i} \]

TF-IDF score: \[w_{ij} = TF_{ij} \times IDF_i \]

Doc profile = set of words with highest TF-IDF scores, together with their scores

Note: we normalize TF to discount for “longer” documents
User Profiles and Prediction

- **User profile possibilities:**
 - Weighted average of rated item profiles
 - **Variation:** weight by difference from average rating for item
 - ...

- **Prediction heuristic:**
 - Given user profile x and item profile i, estimate

$$u(x, i) = \cos(x, i) = \frac{x \cdot i}{||x|| \cdot ||i||}$$
Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended
Cons: Content-based Approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Overspecialization
 - Never recommends items outside user’s content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- Recommendations for new users
 - How to build a user profile?
Collaborative Filtering
Consider user x

Find set N of other users whose ratings are “similar” to x’s ratings

Estimate x’s ratings based on ratings of users in N
Let \(r_x \) be the vector of user \(x \)'s ratings

Jaccard similarity measure

- **Problem:** Ignores the value of the rating

Cosine similarity measure

- \[\text{sim}(x, y) = \cos(r_x, r_y) = \frac{r_x \cdot r_y}{\|r_x\| \cdot \|r_y\|} \]
- **Problem:** Treats missing ratings as “negative”

Pearson correlation coefficient

- \(S_{xy} \) = items rated by both users \(x \) and \(y \)

\[
\text{sim}(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)(r_{ys} - \bar{r}_y)}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \bar{r}_y)^2}}
\]
Intuitively we want: \(\text{sim}(A, B) > \text{sim}(A, C) \)

- Jaccard similarity: \(\frac{1}{5} < \frac{2}{4} \)
- Cosine similarity: \(0.386 > 0.322 \)

- Considers missing ratings as “negative”

- Solution: subtract the (row) mean

\[
\text{sim} \ A, B \ vs. \ A, C: \quad 0.092 > -0.559
\]

Notice cosine sim. is correlation when data is centered at 0

Cosine sim:
\[
\text{sim}(x, y) = \frac{\sum_i r_{xi} \cdot r_{yi}}{\sqrt{\sum_i r_{xi}^2} \cdot \sqrt{\sum_i r_{yi}^2}}
\]
Rating Predictions

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- **Prediction for item s of user x:**

 - $r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$
 - $r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$

 Shorthand: $s_{xy} = sim(x, y)$

- Other options?

- **Many other tricks possible...**
So far: **User-user collaborative filtering**

Another view: Item-item

- For item i, find other similar items
- Estimate rating for item i based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i; x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i; x)} s_{ij}}$$

s_{ij}… similarity of items i and j
r_{xj}… rating of user u on item j
$N(i; x)$… set items rated by x similar to i
Item-Item CF \(|N|=2\)

<table>
<thead>
<tr>
<th>movies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- unknown rating
- rating between 1 to 5
Item-Item CF ($|N| = 2$)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>？</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- estimate rating of movie 1 by user 5
Item-Item CF (|N|=2)

Neighbor selection:
Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:
1) Subtract mean rating m_i from each movie i
 $$m_1 = \frac{(1+3+5+5+4)}{5} = 3.6$$
2) Compute cosine similarities between rows
Item-Item CF ($|N|=2$)

<table>
<thead>
<tr>
<th>movies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>?</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sim(1,m)</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compute similarity weights:

$s_{13}=0.41$, $s_{16}=0.59$
Item-Item CF ($|N|=2$)

Predict by taking weighted average:

\[
 r_{15} = \frac{(0.41 \times 2 + 0.59 \times 3)}{(0.41 + 0.59)} = 2.6
\]
Define similarity s_{ij} of items i and j

Select k nearest neighbors $N(i; x)$
- Items most similar to i, that were rated by x

Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i; x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i; x)} s_{ij}}$$

Baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

- μ = overall mean movie rating
- b_x = rating deviation of user x
 $= (\text{avg. rating of user } x) - \mu$
- b_i = rating deviation of movie i
Item-Item vs. User-User

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Pirates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.9</td>
<td>1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td>1</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **In practice, it has been observed that item-item often works better than user-user**
- **Why?** Items are simpler, users have multiple tastes
Pros/Cons of Collaborative Filtering

- **+ Works for any kind of item**
 - No feature selection needed
- **- Cold Start:**
 - Need enough users in the system to find a match
- **- Sparsity:**
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- **- First rater:**
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- **- Popularity bias:**
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items
Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model

- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem
Remarks & Practical Tips

- Evaluation
- Error metrics
- Complexity / Speed
Evaluation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

movies

users
Evaluation

Test Data Set

<table>
<thead>
<tr>
<th>users</th>
<th>movies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 3 4</td>
</tr>
<tr>
<td></td>
<td>3 5 5</td>
</tr>
<tr>
<td></td>
<td>4 5 5</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>2 1</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

This table represents a test data set for evaluating a recommendation system, where users rate movies on a scale of 1 to 5. The shaded areas indicate missing ratings which need to be predicted.
Evaluating Predictions

- **Compare predictions with known ratings**
 - **Root-mean-square error (RMSE)**
 \[\sqrt{\sum_{xi} (r_{xi} - r_{xi}^*)^2} \]
 where \(r_{xi} \) is predicted, \(r_{xi}^* \) is the true rating of \(x \) on \(i \)
 - **Precision at top 10:**
 - % of those in top 10
 - **Rank Correlation:**
 - Spearman’s *correlation* between system’s and user’s complete rankings

- **Another approach: 0/1 model**
 - **Coverage:**
 - Number of items/users for which system can make predictions
 - **Precision:**
 - Accuracy of predictions
 - **Receiver operating characteristic (ROC)**
 - Tradeoff curve between false positives and false negatives
Problems with Error Measures

- **Narrow focus on accuracy sometimes misses the point**
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- **In practice, we care only to predict high ratings:**
 - RMSE might penalize a method that does well for high ratings and badly for others