
SIT: Sampling-based Interactive Testing for Self-adaptive
Apps

Yi Qin, Chang Xu, Ping Yu and Jian Lu

qy.ics@smail.nju.edu.cn, changxu@nju.edu.cn, yuping@nju.edu.cn, lj@nju.edu.cn

State Key Laboratory for Novel Software Technology, Nanjing University
Department of Computer Science and Technology, Nanjing University

Abstract

Self-adaptive applications (“apps” for short) are useful but error-prone. This stems

from developers' inadequate consideration of environmental dynamics and uncertainty.

Two features of self-adaptive apps,in�nite reaction loop and uncertain interaction,

bring additional challenges to software testing and make existing approaches inef-

fective. In this article, we propose a novel approach SIT (Sample-based Interactive

Testing) to testing self-adaptive apps effectively and in a light-weight way. Our key

insight is that a self-adaptive app's input space can be systematically split, adaptively

explored, and mapped to the testing of the app's different behavior. This is achieved by

our approach's two components, an interactive app model and a test generation tech-

nique. The former captures characteristics of interactions between an app and its envi-

ronment, and the latter uses adaptive sampling to explore an app's input space and test

its behavior. We experimentally evaluated our approach with real-world self-adaptive

apps. The experimental results reported that our SIT improved the bug detection by

22.4–42.2%, but with a smaller time cost. Besides, SIT is also scalable with our tai-

lored optimization techniques.

Keywords: Self-adaptive application testing; interactive application model;

sample-based testing

Preprint submitted to Elsevier June 4, 2016

1. Introduction

Self-adaptive applications (“apps” for short) are gaining increasing attention. Their

programs contain adaptation logic, which decide ways of delivering services based on

varying environmental conditions [1]. Such apps typically run on embedded systems

or smartphone platforms, using their sensors to collect environmental conditions. Dif-

ferent from traditional programs, a self-adaptive app involves a closed interaction loop

that connects the app to its running environment, in which the app senses environmen-

tal changes, makes decisions based on its adaptation logic and performs adaptation to

cope with the sensed changes. Examples of such self-adaptive apps include robot-car

[2], which controls an intelligent automatic car to explore an unknown area, phone-

adaptor [3][4], which adapts the working mode of a smartphone according to its sensed

changes in its user contexts, and Locale [5], which provides location-based services

(e.g., reminding book-returning near library or meeting schedules in of�ce) automati-

cally.

While self-adaptive apps offer �exible functionalities, they have to address com-

plexities incurred by environmental dynamics and uncertainty. Empirical evidence

shows that building self-adaptive apps is challenging and they are easily error-prone

[6][7][8]. Regarding this, we identify two major causes:

In�nite reaction loop. A self-adaptive app executes in an in�nite reaction loop

with its environment [9]. This execution model differs from those of many traditional

apps, which take �nite values (as input) and return results (as output). A self-adaptive

app's reaction loop incurs an in�nite series of input/output pairs, and this forms a large

state space, in which the app's behavior can hardly be adequately tested. Besides, due

to physical constraints, this series of input/output pairs has inherent correlations on

their values. For example, a speci�c output (say, action of moving a robot-car forward)

changes an environment's status, which then affects the concerned app's next input

(say, shortening the distance between the car and its facing obstacle). As such, testing

self-adaptive apps is non-trivial in that it has to take environment into consideration.

In this article, we useiteration to denote one pass in executing an app's reaction loop

(i.e., sensing-decision-adaptation).

2

Uncertain interaction. A self-adaptive app also interacts with its environment in

an uncertain way [10]. This refers to bothinternal uncertainty(dif�culty of deciding

the impact of adaptation on an app's goal realization) andexternal uncertainty(dif-

�culty of deciding the error in measuring environmental conditions) [11]. While the

former concerns more on adaptation algorithms, we in this article focus on the latter,

which affects how a self-adaptive app understands its environment and takes normal or

abnormal behavior.

These two causes together decide the differences between the bugs in self-adaptive

apps and those in traditional programs. While a traditional program's bugs depend

mostly on the program itself (e.g., developers' mistakes in writing programs), a self-

adaptive app's bugs would rely on three factors, namely, the app (program) itself, its

running environment, and the uncertainty that affects app-environment interactions.

First, the app may itself have implementation defects in dealing with app-environment

interactions. Second, the app's running environment follows certain physical con-

straints and this may trigger program bugs in a way independent of the app itself.

Finally, uncertainty in app-environment interactions can also cause the app's execution

to deviate from its supposed path, leading to unexpected failure.

The uniqueness of bugs in self-adaptive app contributes to the challenges in effec-

tively testing self-adaptive apps. An app can fail after accumulating multiple executions

of its reaction loop with its environment. These executions are different iterations of

the same program loop but with different input/output pairs. Testing such an app has

to connect all these iterations, and this forms a large space, in which failure can be eas-

ily missed. Uncertainty further worsens the testing practice by making the input/output

pairs deviate from their ideal values. For example, a robot-car can have its sensed dis-

tance contain unpredicted error, and its turning-direction action can also be imprecise

due to uncontrollable rub with the ground. Such uncertainty can cause new problems

to testing self-adaptive apps. For example, if the car senses its environment once per

second and it runs for only one minute, then its app's execution can contain up to260

possibilities, even if uncertainty causes only two values to each input. Searching for a

bug in such a large space is dif�cult. Thus the testing has to be extremely ef�cient to

be useful.

3

Existing work proposed various random testing techniques to address the large

space problem for self-adaptive apps, e.g., by considering metamorphic relations [12],

context-switching points [13] and adverse environmental conditions [14]. While they

improve the testing ef�ciency, a systematic exploration of an app's space is not guaran-

teed. Moreover, the uncertainty issue is also overlooked. Our later evaluation reports

that random testing could miss 39.2–64.2% bugs in self-adaptive apps.

Some other work focuses on guided testing for systematic exploration of an app's

space. Dynamic symbolic execution (DSE) or concolic testing [15][16] and their vari-

ants are typical examples. When applied for testing self-adaptive apps, these techniques

are also inadequate due to their low-ef�ciency caused by constraint solving. Moreover,

physical constraints from environment (namedenvironmental constraints) are usually,

but such constraints are usually missing, and this causes solving-based techniques un-

able to explore an app's space completely. Our later evaluation reports that DSE could

miss 25–40.5% bugs in self-adaptive apps. Besides, DSE itself is very time-consuming

and it could explore very limited reaction interactions given the same time budget.

Self-adaptive app resembles mobile app in that both of them relate the environment.

However, our work is essentially testing self-adaptive apps that interact with their en-

vironments, which can act in an uncertain way, rather than testing mobile apps without

considering their environments and uncertainty explicitly (although such apps can also

be our subjects in some situations as shown in our evaluation). Testing self-adaptive

apps differs from testing mobile apps. For example, the former needs to consider an

app's environment for a complete interaction-and-adaptation loop and this loop can

go for multiple iterations, while the latter focuses mostly on an app itself. In other

words, when considering sensing inputs from multiple iterations between an app and

its environment, testing a mobile app seldom considers the inherent constraints of the

sequences of sensing inputs of the app. This might cause problems to testing self-

adaptive apps that interact with their environments, if one uses the same testing ap-

proach. For example, our later evaluation reports that bugs detected for self-adaptive

apps by a mobile app testing approach [20] can contain up to 78.5% false positives.

In this article, we propose a novel approach SIT (Sample-based Interactive Testing)

for testing self-adaptive apps. It consists of an interactive app model and a test gener-

4

ation technique. The model captures the characteristics of interactions between an app

and its environment, and the technique uses adaptive sampling to systematically ex-

plore an app's space. They together contribute to our SIT approach's effectiveness. On

one hand, our interactive app model considers the impact of environmental constraints

and uncertainty on an app's input/output pairs, and enables a systematic exploration

of its space. This exploration is guided, as compared to random testing. On the other

hand, our test generation technique is light-weight by only sampling those inputs re-

quired by the exploration. Besides, the sampling does not rely on constraint solving, as

compared to DSE. Therefore, it is highly ef�cient.

We experimentally evaluated our SIT approach with real-world self-adaptive apps

and compared it with existing work. The experimental results consistently showed

our SIT's effectiveness and ef�ciency. In particular, SIT improved the bug detection

by 22.4–42.2% but with a smaller time cost. In summary, we make the following

contributions in this article:

� Proposed an interactive app model for understanding interactions between an app

and its running environment;

� Proposed a test generation technique for systematically sampling an app's space

in a light-weight way;

� Conducted experiments to evaluate our approach with real-world self-adaptive

apps.

The remainder of this article is organized as follows. Section 2 introduces our in-

teractive app model for understanding how an app interacts with its environment, and

presents a motivating example. Section 3 elaborates on our sampling-based test gen-

eration based on our interactive app model. Section 4 evaluates our SIT approach and

compares it with existing work. Section 5 discusses related work, and �nally Section 6

concludes this article and discusses future work.

2. PRELIMINARIES

In this section, we introduce our interactive app model and present our motivating

example based on this model.

5

2.1. Interactive App Model

We propose an interactive app model (IAM) to explain how a self-adaptive app

interacts with its environment under uncertainty. The model concerns not only the app

itself, but also its interacting environment, as contrast to traditional app models, which

typically concern apps themselves only.

Given a self-adaptive app, we de�ne its IAM using a tuple (P, E , inter P , inter E ,

U, C). We useP to represent the app, andE to represent the environment where the

app executes. We assume the availability ofP 's source code (i.e., white-box), but do

not know howE works (i.e., black-box). Still, we can observeP's behavior inE (i.e.,

P 's output) andP's obtained sensory data fromE (i.e.,P 's input) through the testing

interfaces ofP and E, denoted byinter P and inter E , respectively. Testing inter-

faces describeP's andE 's variables whose values can be observed and manipulated

as requested by a certain testing approach. We useU to represent an uncertainty spec-

i�cation, which describes the uncertainty affecting the interactions betweenP andE.

Note that a complete description of uncertainty is typically infeasible, but we assume

the availability of a partial speci�cation (e.g., knowing a speci�c sensor variable's er-

ror range, which can be obtained from hardware speci�cation or �eld tests). We useC

to representP 's andE 's initial con�guration (i.e., default startup parameters forP and

initial environmental layout forE). In the following, we elaborate on these elements.

App (P) and its testing interfaceinter P . Given a self-adaptive appP, we de�ne

its testing interface using a tuple (I P , OP , GP):

� I P represents the app's input parameters. It is formed by a vectorhi P 1; i P 2; :::; i P n i ,

and each onei P j represents a speci�c sensor variable, which takes sensory data

as its value from environment.

� OP represents the app's output parameters. It is also formed by a vector

hoP 1; oP 2; :::; oP m i , which together explain what change is to be made to en-

vironment.

� GP represents a set of variables de�ned inP that are shared across different

iterations inP 's execution. These variables are considered asglobal variables

of P. Their values specify the app's current state.

6

Take our Robot-car appP for example. Its input parametersI P is a vector contain-

ing three variables:hdisF; disL; disR i , which represent the car's sensed distances to

its front, left-hand and right-hand obstacles, respectively. Its output parametersOP is

a vector of two variables:hactionType; actionParai , which represent the type of the

action the car is to take (e.g.,“moving” or “turning”) and its associated data (e.g., 3 cm

for “moving” or +90 degrees for “turning”). The app's global variablesGP contains

two variables,task andpast, which represent the car's current task and recent input

data (containing last �ve inputs for decision making), respectively.

Environment (E) and its testing interface inter E . Our interactive app model

also considers the environmentE in which a self-adaptive appP executes. Concep-

tually, we consider the environment as a black-box program, which takes the appP's

output as its input (i.e., applying the change the output is to make) and returns its output

asP's input (i.e., returning sensory data toP). We further de�neE 's testing interface

inter E using a tuple (I E , OE , GE):

� I E represents the environment's input parameters. It is a vectorhi E 1; i E 2; :::; i Em i ,

which corresponds to the appP's outputhoP 1; oP 2; :::; oP m i .

� OE represents the environment's output parameters. It is also a vectorhoE 1; oE 2; :::; oEn i ,

which corresponds to the appP's input hi P 1; i P 2; :::; i P n i .

� GE represents a set of variables that describe environmentE 's status (e.g., en-

vironmental layout and object relationships). We assume these variables to be

observable and resettable, thus facilitating our testing of the concerned appP.

For our Robot-car appP, its environmentE 's input parametersI E contains two

variables:actionTypeandactionPara , which are exactlyP 's output parameters (i.e.,

type of the action the car is to take and its associated data).E 's output parameters

OE contains three variables:disF , disL and disR, which similarly correspond to

P's input parameters (i.e., car's sensed distances to its front, left-hand and right-hand

obstacles).GE contains variables likeenvCarLoc, envCarDir , envObjP ro1, ...,

envObjP ron . They describe the car's current location, direction, and properties of

obstacles (e.g., layout and boundaries) in the environment.

Uncertainty speci�cation (U). We de�ne the uncertainty speci�cationU as a

set of functions, each of which maps a given environment's output parameteroE

7

EP U

)(
EP
OUI

E
I

P
O

E
O

C

2

inter
E

inter
P

4

11

3

Figure 1: IAM's iterative reaction loop

to its corresponding app's input parameters as well as the associated error range

(i P ; lower; upper). We assume the error range to be continuous within its lower and

upper bounds. This simpli�cation treatment applies to many real-world cases. Our

model includes uncertainty since a self-adaptive appP interacts with its environment

E under uncertainty in practice. If one does not consider uncertainty,P 's input I P

would trivially equal to environmentE 's outputOE , i.e., I P = OE , on their values.

In practice,I P 6= OE (on values) due to uncertainty. Their differences are caused

by unreliable environmental sensing (e.g., a sensed value deviates from its supposed

value) or �awed physical actions (e.g., an action is taken without exactly achieving its

supposed effect) [21]. The aforementioned de�nition ofU models such differences.

For our Robot-car app, its uncertainty speci�cationU is de�ned as the following

mappings:

OE :disF ! (I P :disF; � 0:1; 0:1);

OE :disL ! (I P :disL; � 0:1; 0:1);

OE :disR ! (I P :disR; � 0:1; 0:1).

Con�guration (C). We useC to represent the initial con�guration for appP and

environmentE . C contains initial values for variables inGP andGE , respectively.

For our Robot-car app,C makes initial assignments to appP's global variables, and

initializes environmentE 's layout and properties of its contained obstacles.

As a whole, our interactive app model IAM = (P, E , inter P , inter E , U, C) works

in an iterative way, as illustrated in Figure 1. It starts with appP and environmentE

initialized by con�gurationC through their testing interfaces(Label 1). AppP's input

8

I P comes from environmentE 's outputOE . ThenP executes based onI P , updates its

GP , and returns outputOP by its testing interfaceinter P (Label 2).E takesOP as its

input I E , “executes” by applyingI E 's effect to update itsGE , and returns outputOE

by its testing interfaceinter E (Label 3). This forms an iterative reaction loop. Since

uncertainty speci�cationU affects the interactions betweeninter P and inter E , we

conceptually represent this affection byI P = U(OE), makingI P andOE no longer

simply identical (Label 4).

Our SIT approach assumes that the app under test should have source code (some

existing work also has this assumption, e.g., [49][3]), but this assumption does not also

go for the environment under test (i.e., the environment can simply be a black box).

Besides, the source code of a self-adaptive app can be used to explain how a failure

is triggered for this app, when it runs under a speci�c environment according to SIT's

generated execution traces, as we explain later.

We also have two assumptions for the used environment in our SIT approach. First,

we assume that the environment should be observable. This implies that one can mon-

itor the values of its parameters for understanding its status during an app's execution.

Some existing work [14][49] on testing self-adaptive apps has similar assumptions.

Besides, this assumption may also be supported by existing work [50][51]. With this

support, one is able to evaluateOE andI P , as required in our SIT approach. Second,

we optionally assume that the environment can also be manipulated, i.e., the values of

its parameters can be set or reset. This facilitates executing our SIT approach. If it is

not supported, our approach still works but has reduced ef�ciency as the app under test

needs to restart from the beginning each time.

Then the elements in an IAM model can be prepared as follows: (1) appP is di-

rectly available from the user, who plans to testP; (2) environentE is also available

from the user, which could be an environment simulator, emulator or a real one (e.g.,

we used third-party simulators or emulators for experimental subjects in our later eva-

lutation); (3) testing interfaceinter P is realized by instrumenting appP (concerned

input and output parameters should be identi�ed manually in advance), and testing in-

terfaceinter E should be already ready ifE is a simulator or emulator, or needs manual

implementation ifE is a real environment (the implementation is not complex as it is

9

only for observingE 's status but not controllingE); (4) uncertainty speci�cationU is

prepared manually from hardware speci�cation or �eld tests (we checked sensor speci-

�cations for our experimental subjects and conducted trials for con�rming error ranges

for concerned sensors); (5) initial con�gurationC should be prepared manually, and

some of its items need manual settings (e.g., the space boundary for the simulated en-

vironment for Robot-car in our experimental subjects), while others can be generated

randomly (e.g., obstacles and their layout in the environment for running the car).

2.2. Motivating Example

Let us consider an app that controls a robot-car to explore an unknown area based

on its sensed distances to nearby obstacles. The car is required to keep some distance

from obstacle in any direction for safety. Figure 2 shows a code snippet of the app's

program. The code snippet describes the app's adaptation logic when the car is too

far away to its right-hand obstacle. Line 163 calculates a turning angle based on past

sensory data. Line 168 makes the car take an “approaching the obstacle” decision by

controlling the car to drive by leaning to its right-hand obstacle. When the app �nds

that the car is already keeping a safe distance from the obstacle, Line 171 turns the car

again to make it drive in parallel to the obstacle and continue its exploration.

The shown code snippet can control the car to explore an unknown area correctly

under ideal settings, i.e., when app-environment interactions do not suffer any uncer-

tainty. However, it may have problems at the presence of uncertainty. In the scenario

illustrated in Figure 3, when the car drives to Position “A”, the app plans to control

the car to turn left by an angle in order not to crash into the obstacle wall, i.e., follow-

ing the �rst dashed line D1. Line171 calculates the car's turning angle for turning

the car away from the obstacle, i.e., following the �rst dashed line D1. It uses a sim-

ple trigonometric calculation based on past sensory data (past[4] andpast[0]).

When considering uncertainty, all distance data contain error and the car may also not

drive in an expected direction precisely. In some situations, uncertainty may just cause

a smaller turning angle, and after turning the angle the car actually drives along the

second dashed line D2. This direction, although not ideal, may not necessarily drive

the car to crash into obstacle immediately. However, in an extreme situation, i.e., the

10

1. public void main() // Main function

2. {

3. RobotCar P = new RobotCar();

…

53. while (true)

54. {

55. input = P.obtainData(); // Sense environment

 …

162. if (P.task == ALONG_WALL && input.disR < 10){

163. float angle = -(Math.abtan(((past[0].getR() -

past[4].getR()) / 5) / Math.PI * 180) +15);

164. act = new Action (“turning-direction”, angle);

165. P.task = ADJUST;

166. P.updatePast(input);
167. } else if (P.task == ADJUST && !input.disR > 16){

168. act = new Action (“moving”, 2);

169. P.updatePast(input);

170. } else if (P.task == ADJUST && input.disR > 16){

171. float angle = Math.atan(((past[0].getR() -

past[4].getR()) / 5) / Math.PI * 180);

172. act = new Action (“turning-direction”, angle);

173. P.task = ALONG_WALL;

174. P.updatePast(input);

175. } else if …

…

403. P.output(act); // Make adaptation (take action)

404. }

…

512. }

…

Figure 2: A code snippet for an example self-adaptive app

11

robot-car

D1

D2D3

A

past[0].getR()

past[4].getR()

…

float angle = Math.atan(((past[0].getR() -

past[4].getR()) / 5) / Math.PI * 180);

…

171.

Figure 3: A bug manifested by uncertainty in the Robot-car app's program

difference betweenpast[4] andpast[0] is too large due to sensing error, the car

might actually drive along the solid line D3, which causes the car to get too close to the

wall or even crash into the wall, thus leading to a failure (physical crashing or safety

assertion violated).

This example discloses the following testing challenges:

Large state space.The app takes sensory data as input from its environment, and

their value combinations can be numerous. Besides, uncertainty blurs these values in

a random way, and this further expands the app's state space. Software testing has

to ef�ciently explore this large space to �nd potential execution traces leading to any

failure.

Long execution trace.The app may iterate quite a few times before it executes to

a failure, since a bug may manifest only after quite a few iterations. Software testing

has to explore as many iterations as possible within its time budget, since a bug may

manifest only after quite a few iterations.

The two challenges prevent existing work from effectively testing self-adaptive

apps. For random testing, it treats an app as a black-box and tries to cover its space as

much as possible. Consider our Robot-car app that has three input parameters. Assum-

ing that each parameter has 100 different values, their combinations can be up to1003

even in a single iteration, not to mention when combined with uncertainty. Our later

evaluation shows that random testing can hardly �nd execution traces leading to fail-

ures like the one in Figure 3. For guided testing like DSE, it can explore all paths in one

12

iteration systematically by solving constraints from these paths in turn. However, long

execution trace makes DSE very ineffective. For our example, the failure manifests af-

ter Position “A”. This accumulation requirement makes DSE have to take great effort to

explore multiple iterations so as to reach that failure point. This can quickly drain lim-

ited time budget, not to mention that long execution trace can easily make constraint

solving fail (i.e., timeout without any result). Our later evaluation shows that DSE can

only explore �rst several iterations, missing most bugs like the one in Figure 3.

The two challenges exhibit distinct requirements on testing self-adaptive apps.

Large space requires systematic space exploration in order not to miss failure-inducing

traces, and long execution trace calls for ef�cient space exploration in order not to drain

time budget quickly. Random testing and DSE fail to satisfy at least one requirement,

while our proposed SIT approach can meet both. Its interactive app model enables sys-

tematic space exploration, and its test generation allows light-weight sampling-based

testing. They together contribute to effective testing of self-adaptive apps, as we ex-

plain in the following.

3. SAMPLING -BASED I NTERACTIVE TESTING

In this section, we present our SIT approach for testing self-adaptive apps suffering

uncertainty.

3.1. Overview

Our SIT contains an interactive app model IAM, as introduced in Section 2, and

a test generation technique based on this model. Given a self-adaptive appP's IAM

model, SIT would return a set of sequences of value assignments tointer P 's input pa-

rametersI P . Each sequence speci�es a series of inputs toP, which runs with the inputs

and eventually fails in its execution. Thei -th value assignment in a sequence assigns

values toP's input in its i -th iteration. To facilitate our discussions, we introduce two

concepts, input space and input space tree, below.

Input space (IS). An input spaceIS speci�es ranges of possible values for

input parameters toP, or more precisely,IS = r 1 � r 2 � ::: � r n , where r i

13

speci�es a range of possible values forP 's i -th input parameter according to un-

certainty speci�cationU. We represent an input space as a vector of intervals

h[i P 1low; i P 1up]; [i P 2low; i P 2up]; :::; [i P n low; i P n up]i , in which the i -th interval

speci�es the range of values forP 's i -th input parameter.

Input space is due to uncertainty, which changes input values for appP from de-

terministic values into non-deterministic values in a range. Considering that our tar-

geted self-adaptive apps use sensors to collect environmental conditions, their input

parameters take real numbers as values. Since each input parameter's value can vary

in its error range, the whole input space becomes a continuous real-number space.

For our Robot-car example, if the ideal distance from the car to its front/left/right

obstacle is 5, 10 and 7 respectively, then the app's input space at this moment is

h[4:9; 5:1]; [9:9; 10:1]; [6:9; 7:1]i , assuming uncertainty to be[� 0:1; +0 :1] for all in-

put parameters.

Input space tree (IST). An input space tree gives the hierarchical structure for a

set of input spaces, which provide input values for different iterations in a self-adaptive

app's execution. In such a tree, if an input space is the parent node of another input

space, it implies that the latter is derived from an iteration whose execution input is

from the former. The root of an input space tree is always the initial input space, which

is determined by the initial con�gurationC in an app's IAM model.

We use such a tree structure to model the relationships between input spaces for

different iterations in an app's execution. This follows the intuition that an app's input

values in one iteration can be affected by its input values in its past iterations. An app's

input space tree would keep spanning when it takes more iterations in its execution.

This is because in each iteration the app can possibly take different input values from

the input space particular for this iteration. Thus, the input space tree models how

our SIT approach explores an app's space. For our Robot-car example, a possible

child node for the preceding inputh[4:9; 5:1]; [9:9; 10:1]; [6:9; 7:1]i can be a new input

spaceh[3:9; 4:1]; [9:9; 10:1]; [6:9; 7:1]i , if the car drives one unit of distance ahead in

the current iteration.

To �nd failure-inducing sequences of inputs, our SIT systematically explores the

input space tree for an app in a breadth-�rst search (BFS) manner, i.e., SIT does not

14

proceed for the input space ofP 's i -th iteration until it has explored all input spaces

of P 's (i � 1)-th iteration. When appP starts, its testing interfaceinter P 's initial

values for input parametersI P come from its �rst environmental sensing, i.e.,OE 's

value fromE 's testing interfaceinter E . Due to uncertainty, even ifOE 's value is

deterministic,I P 's value can vary in its corresponding input space. We useU to derive

the space and it is the root node ofP 's input space tree, which is to be �rst explored by

SIT.

To explore an input space, SIT does not try all possible values in this space. Instead,

it only samples some of them and make these sampled ones representative in terms of

exercising an app's different behavior (sampling details discussed later in Section 3.3).

For the �rst iteration, SIT explores an app's initial input space to check whether any

speci�c input i P in this space can lead to a failure. If yes, a failure-inducing sequence

(containing only one input in this case) is found. Otherwise, for each sampled inputi P ,

since it does not lead to any failure, the app's execution would return a corresponding

outputoP . SIT feeds each such outputoP to environmentE as its inputi E and observes

E 's outputoE . Similarly, due to uncertainty, this output does not equal to appP's input

in the next iteration. Instead, it corresponds to a new input space. The number of new

input spaces in the next iteration equals to that of sampled inputs in the current iteration.

Then a new round of the input space exploration starts, except that this time SIT has

to explore more than one input space, and its constructed failure-inducing sequences

can contain more than one input (for multiple iterations). This process repeats until a

failure is encountered, if one aims to detect the �rst failure, or all time budget drains

out (e.g., timeout), if one aims to detect as many failures as possible.

3.2. SIT Framework

Different from traditional programs, self-adaptive apps typically execute the same

reaction loop for multiple iterations. Our intuition is to divide the task of testing a self-

adaptive app's execution into that of testing its multiple iterations. We use anabstract

tracewith multiple trace segmentsto record an IAM's execution.

Abstract trace (AT) and trace segment (SEG). We useabstract traceto rep-

resent an IAM's execution. An abstract trace is a sequence of trace segments

15

Algorithm 1 SIT framework
Input:

IAM M := (P; E; inter P ; inter E ; U; C).

Output:

A set of failure-inducing sequencesFAIL.

1: FAIL := ; ;

2: let is0 be the initial input space ofP;

3: IS := f is0g; // All input spaces to explore

4: at0 := h(, , G0
P , G0

E , is0) i ; // G0
P andG0

E are fromC

5: AT := f at0g; // All abstract traces collected so far

6: while time budge allowsdo

7: while IS 6= ; do // Execute app by sampling

8: is := removeFrom(IS); // BFS exploration

9: let at be fromAT such thatat[LAST].is = is;

10: (SEGfail ; SEGsucc) := sampling(M , is, at[LAST].GP);

11: FAIL := FAIL
S

appendInput(at, SEGfail);

12: AT := AT n f atg
S

appendSeg(at, SEGsucc);

13: end while

14: AT 0 := ; ; // Prepare for new abstract traces

15: while AT 6= ; do // Interact with uncertain environment

16: at := removeFrom(AT);

17: (is, GE) := interact(M , at[LAST].oP , at[SEC LAST].GE);

18: at[LAST].is := is;

19: at[LAST].GE := GE ;

20: AT 0 := AT 0 [f atg;

21: IS := IS [f isg;

22: end while

23: AT := AT 0; // New abstract traces ready

24: end while

25: return FAIL;

16

hat1; at2; :::; atn i , where each trace segment records the execution information for one

iteration of the concerned IAM. For ease of presentation, we useat0 to represent the

IAM's state before its �rst iteration. Atrace segmentis a tupleat i : (i P , oP , GP , GE ,

is), in whichat i :i P andat i :oP represent appP's input and output, respectively, in its

i -th iteration.at i :GP andat i :GE represent values ofP 's andE 's global variables af-

ter �nishing thei -th iteration, respectively.at i :is represents appP's input space for its

next iteration, which is fromP's interaction with environmentE in this iteration.

As mentioned earlier, we useGP andGE to represent the state of an IAM during

its execution. In practice, all of app P's global variables are put intoGP , and we in-

strumentP to recordGP during the IAM's execution. ForGE , its contained global

variables depend on a given environment's observability. If it is an environmental sim-

ulator or emulator, we use its controlling interfaces to decide those parameters related

to environmental layout and object relationships, and add them intoGE . If it is a

real environment, we need to specify a set of elements that can monitor and quantify

appP's operation conditions in environment. ThenGE includes those variables that

can monitor these speci�ed elements. Such monitoring can be accomplished by pas-

sively monitoring appP's sensing input (e.g., for surrounding environmental layout)

or actively monitoring the environment via additional infrastructures (e.g., for precise

location of a driving car). This process may need manual support, as also suggested by

existing work [37].

Algorithm 1 gives our SIT approach's framework. It tries to detect as many failures

as possible and uses BFS for space exploration. SetFAIL collects failure-inducing

sequences, each of which is a series of inputs to appP and each input speci�es values

to P's input parameters in one iteration.is0 is the initial input space for exploring (Line

2), as explained earlier.at0 is the state before the �rst iteration, in whichG0
P andG0

E

are initial values of variables inP andE from initial con�guration C (Line 4). After

initialization (Lines 1–5), SIT executes appP with generated tests in two steps (Lines

6–24). First, SIT uses sampling to explore each available input space in the current

iteration (Lines 7–13). The exploration results in two sets,SEGfail andSEGsucc ,

which collect failing and passing executions, respectively, for the current iteration (Line

10). SEGfail goes toFAIL for failure-inducing sequences since sampled inputs have

17

caused failure (Line 11).SEGsucc extends the current abstract traces with new trace

segments since appP successfully executes to its output (Line 12). Second, SIT makes

appP interact with its environmentE for each of the current abstract traces (BFS has

multiple executions for each iteration; Lines 14–23). For appP's output from each

abstract trace, the interaction betweenP and environmentE leads toP's new input

(recallOP) I E) OE) I P). Due to uncertainty in the interaction, each valuei P

grows into a spaceis asP's input in its next iteration (Line 17). When values of the

last trace segments in the current abstract traces are all ready, this process goes back to

the beginning to start the next round of iteration. It repeats until all time budget drains

out. If one aims to detect the �rst failure only, the algorithm can terminate once the

�rst failure is detected at Line 11.

In an ideal environment where uncertainty does not exist, we haveI P = OE andI E

= OP , on values, which make the methodinteract at Lines 17 quite simple. When

uncertainty exists, we haveI P = OE � 4 E andI E = OP � 4 P (conceptually). Here,

we use4 to denote the error introduced by the uncertainty speci�cation. As such,

a speci�c app's inputi P should consider this error in practice. We represent this by

growingi P into an input space, each dimension of which extends from one point to a

range as speci�ed by the uncertainty speci�cationU de�ned in the IAM. This treatment

applies to many real-world cases. Even if an actual error range may not necessarily be

continuous, this treatment avoids missing potential failure-inducing inputs. Figure 4

illustrates this interaction process. Another issue concerning methodinteract is

that how one derivesOE based onOP . If E can be manipulated, we directly setE to

at[SEC LAST].GE , the environment's state by the end of the last iteration, and execute

E on OP to deriveOE . If E cannot be manipulated, we have to resetE according to

the initial con�gurationC, and executeE from the beginning using the abstract trace.

3.3. Sampling-based Test Generation

Here we explain more about how tests are generated. Our SIT explores appP's in-

put spaceis through systematic sampling ofis, rather than trying all possible values in

is. Its goal is to try those sampled inputs only such that they lead to different execu-

tions inP. This “difference” can be easily judged by their execution traces. Figure 5

18

E

Further explore the

new input space is

P
o

E
o

P
o

A trace segment

with app output
P
o

Execute E with as

input, and obtain E’s

output

P
o

E
o

Expand to obtain

input space is for P’s

next iteration

E
o

Error range

Error

range

Figure 4: IAM-based app/environment interaction

An input space

to explore

Split the space for

further exploration

if necessary

Execute P with

vertexes as inputs and

obtain execution traces

Execute P with new

vertexes to cover

more program paths

Figure 5: Sampling-based test generation

illustrates this sampling process. SIT �rst samples all vertexes at boundaries of input

spaceis, and obtains corresponding execution traces by taking these vertexes as inputs

(each vertex/input leads to one execution trace). Based on the similarity of the sampled

execution traces, SIT decides whether to split the current space for further exploration.

Each splitting brings multiple smaller input spaces, whose number relies on the dimen-

sion of the original input space. This splitting and exploration process repeats until an

input space is suf�ciently small or its vertexes do not lead to different executions for

appP. Among all sampled executions, failing ones go toSECfail and passing ones

go toSECsucc for further processing as in Algorithm 1.

More precisely, SIT measures the similarity of execution traces from an input

space's all boundary vertexes and decides whether to further split this input space for

new exploration. It �rst derives the set of input values from the current input space's

all boundary vertexes. Then it executesP with these input values for one iteration in

turn, and records their execution traces, which are basically taken branches in the exe-

cutions. After that, the similarity among these execution traces can be measured based

on the overlapping of their taken branches. We assign each branch a uniqueid and cal-

culate a hash value based on theids of all taken branches in an execution trace. By this

hash value, one can quickly distinguish different execution traces. Besides, similar-

19

Algorithm 2 Sampling-based test generation
Input:

IAM M := (P; E; inter P ; inter E ; U; C), input spaceis, andGP .

Output:

Two sets of trace segmentsSECsucc andSECfail .

1: SECsucc := ; ;

2: SECfail := ; ;

3: IS := f is0g; // All input spaces to explore

4: while IS 6= ; do

5: is := removeFrom(IS);

6: H := ; ; // Storing hash values for execution traces

7: for each vertexi P of is do

8: set(P; GP); // SetP 's global variables toGP

9: (seg; branches) := execute(P, i P); // ExecuteP with input i P

10: if P fails then

11: SECfail := SECfail
S

f segg;

12: else

13: SECsucc := SECsucc
S

f segg;

14: end if

15: H := H
S

f hash(branches)g;

16: end for

17: if !similar(H) && !tooSmaller(is) then

18: IS := IS
S

split(is);

19: end if

20: end while

21: return (SECfail , SECsucc);

20

ity can also be calculated for a set of hash values from the aforementioned executions.

For example, given an input space with four boundary vertexes (i.e., a two-dimensional

space), these vertexes correspond to four inputs. We feed the four inputs toP, observe

its execution traces, and obtain four corresponding hash values. The similarity among

these four hash values decides whether one needs to further split this input space. Cur-

rently, we apply a simple strategy, i.e., considering the hash values the same or different

only. We use a threshold for this strategy, which is set to one. It trivially implies that

the input space should be further split if any hash value differs from the others.

When we decide to further split an input space, it is split in half at each dimension,

i.e., selecting a midpoint between two vertexes of each dimension. Thus we obtain2n

smaller input spaces from the original one, wheren is the space's dimension. This

seems to grow exponentially, but many of the input spaces do not have to be explored.

We discuss their optimizations later in Section 3.4. Besides, we stop splitting an input

space if it has been suf�ciently small. We name this “suf�ciently small” criterion

space-splitting threshold. The setting of this threshold value needs to balance our SIT

approach's testing coverage and ef�ciency. A smaller threshold value enables one to

sample an input space more precisely to �nd failing executions for an app. However,

it also incurs more time cost in exploring each input space, and results in less explored

input spaces that SIT can explore within a given time budget. On the other hand, a

larger threshold value enables one to sample an input space more ef�ciently, and thus

SIT can explore more input spaces within the same time budget. However, one may

miss few failing executions. In this work, we set the threshold to be1=16of error ranges

from the uncertainty speci�cationU to balance SIT's effectiveness and ef�ciency. We

also investigate the impact of different threshold values on SIT's effectiveness and

ef�ciency in the later evaluation.

Our sampling-based test generation was inspired by existing work on white-box

sampling [22]. The idea works for testing of self-adaptive apps due to the following

two observations. First, a self-adaptive appP's input parameters take values from

sensors, which typically report real numbers in continuous ranges. This enables us to

split an input space and obtain meaningful samples asP's inputs. Second, an app's

adaptation logic typically relies on a value range for its input to cope with uncertainty

21

0
is

1
is

1
v

2
is

3
v

6
v

2
v

5
v

8
v

9
v

4
v

7
v

3
is

4
is

(a) Vertex retest redundancy

is
is

v
P
GLASTta].[1 P

GLASTta].[2

isLASTta].[1

isLASTta].[2

is

v

v

vv

v

v

v

v

is is

(b) Space subsumption redundancy

Figure 6: Two types of redundancy in sampling

in its environmental interaction, rather than on speci�c value points. For example,

PhoneAdaptor changes its pro�le when its collected GPS position falls in ranges like

“home” or “of�ce”, rather than a speci�c position at home or in of�ce [4]. These two

observations concern a self-adaptive app's input and output, respectively, and our SIT

exploits them to systematically split an input space and test an app's different behavior.

Algorithm 2 gives our sampling-based test generation. At the beginning, it explores

only one input space (Line 3), but later it may explore more if the space is further split.

In each exploration, the algorithm investigates one input space, and checks whether its

vertexes (as appP's inputs) lead to any failure, which is recorded (Line 11). All exe-

cution traces in one exploration are calculated for their hash values (Line 15), which,

after a similarity and space size check (Line 17), decide whether to further split the

current input space (Line 18).

3.4. Optimizations

As mentioned, sampling for an input space can lead to this space being split, when

the samples from the space drive the app being tested to behave differently. Although

we control the limit of splitting an input space into smaller ones, the growth of their

number can be quick. Therefore, we introduce optimizations in our SIT approach to

alleviating this issue.

In our sampling-based test generation, vertexes for testing in one iteration and input

spaces for exploring across different iterations can both be redundant. We optimize

22

them by pruning.

Figure 6(a) illustrates the �rst type of redundancy,vertex retest redundancy. It

occurs when an input space is split into smaller ones in one iteration. In Figure 6(a),

input spaceis0 is split into four smaller ones,is1, ..., is4. For is0, SIT has tested its

four vertexes,v1, v2, v3, v4. When exploringis1, SIT tests its four vertexes,v1, v5, v6,

v9, in which v1 is retested. When exploringis2, SIT testsv5, v2, v9, v7, in which v5,

v2, v9 are retested. Such retesting is redundant. We use a coordinate-based mechanism

to name different input spaces and cache hash values for tested vertexes. This enables

us to test each vertex at most once.

Figure 6(b) illustrates the second type of redundancy,space subsumption redun-

dancy. It occurs when two abstract traces from two iterations have their app's global

variablesGP values equal but one's input space subsumes the other's (considering

their last trace segments only). Then exploring the latter's input space is redundant.

Here,GP refers to those global variables in appP, as mentioned earlier when we in-

troduce our IAM model. We useGP only (i.e., no need to compareGE) as an input

space already carries suf�cient information for environmentE . GP values are derived

based on the instrumentation made for app P, as mentioned earlier. We de�ne two

sets of global variables having “equal” values as follows: for real-number variables

(e.g., �oat or double types), their value differences should be less than a reasonable

small threshold, say0:01; for other variables (e.g., integer, string or char types), their

value should be identical or theirequals methods return true. With this de�nition,

ta1[LAST].GP andta2[LAST].GP in Figure 6(b) can be equal, since theirtask's val-

ues are both “TURNINGRIGHT”, andpast's values are very close to each other due

to similar environmental conditions.

4. EVALUATION

In this section, we discuss the evaluation of our SIT approach with real-world self-

adaptive apps. Section 4.1 introduces the implementation of our SIT approach. Sec-

tion 4.2 presents our research questions for study, as well as variables and metrics

for measuring these variables derived from the questions. Section 4.3 introduces the

23

selected subjects. Section 4.4 discusses issues relating to our preparations for experi-

ments. Section 4.5 elaborates on our experimental design and procedure. Section 4.6

presents and analyzes the experimental results, as well as answering earlier raised re-

search questions. Finally, Section 4.7 discusses the threats to the validity of our exper-

iments.

4.1. SIT implementation

We implemented our SIT approach in Java 8. It consists of 4 packages, 34

classes and 8,700 LOC (lines of code) without comments. Each of the packages

represents a module of our SIT approach, which includesexploring , sampling ,

interaction andrecording . The �rst two modules implemented our SIT frame-

work, as shown in Algorithms 1 and 2. Moduleinteraction drives the target app

and its environment by following our IAM model. It also provides interfaces for ob-

serving and controlling the app and environment. Modulerecording records the

execution trace of the IAM and analyzes it for testing support.

4.2. Research Questions

Research questions and variables.We aim to answer the following research ques-

tions:

RQ1: How does SIT compare to random testing (RT), dynamic symbolic execution

(DSE), and caiipa (a mobile app testing tool [20]) for effectiveness and ef�ciency

in testing self-adaptive apps?

RQ2: How do the settings of SIT, e.g., uncertainty level and space-splitting thresh-

old, affect the effectiveness and ef�ciency of SIT in testing self-adaptive apps?

RQ3: Do our optimizations help on SIT's testing ef�ciency, and in what way?

We compare SIT with RT and DSE since we believe that they are good representa-

tives for unguided and guided testing approaches. We also chose caiipa to compare its

effectiveness in detecting bugs with SIT, since caiipa, as a mobile app testing tool [24],

also considers the impact of environment in generating its test inputs.

The independent variables of our evaluation include the speci�c approach used for

self-adaptive app testing (i.e., SIT, RT, DSE or caiipa), uncertainty level (i.e., the scale

24

rate of error ranges speci�ed by uncertainty speci�cationU, varying from 20–100% of

original error ranges), space-splitting threshold (for deciding when to stop splitting an

input space, ranging from 1/4 to 1/64), and applied optimization setting (i.e., reducing

vertex retest redundancy only, reducing space subsumption redundancy only, reducing

both, or without any optimization). The dependent variables include theeffectiveness

andef�ciencyin testing self-adaptive apps.

We measure effectiveness by the number of detected bugs and branch coverage.

We measure ef�ciency indirectly by comparing the number of detected bugs given the

same time budget for different testing approaches for RQ1 and RQ2. For RQ3, we

measure ef�ciency by comparing the time of exploring the same iterations in executing

experimental apps for SIT with different optimization settings.

Metric explanations. We further explain two metrics in measuring the effective-

ness, namely, detected bugs and branch coverage. For detected bugs, we note that man-

ifesting a bug in a self-adaptive app differs from that in a traditional program. Such a

bug has to manifest in a certain environment in which a self-adaptive app runs for a

couple of iterations. Therefore, the environment's con�guration plays an important

role in the bug detection. Recall that we use initial con�guration for this purpose as

de�ned in IAM. Thus in our experiments, we consider an appP and an initial con�g-

urationC (for initializing P and its associatedE) as atest instance. We de�nefailure

as an appP violating any of its assertions under its initial con�gurationC within a

given time budget. If a testing approach can detect any failure for a test instance (P,

C) within the time budget, it is said to detect thebugassociated with this test instance.

For branch coverage, we de�ne it as follows, considering that a self-adaptive app

can execute the same code snippet many times (by multiple iterations). LetB i be the

set of visited branches during thei -th iteration in appP's execution, andB be the

set of all branches ofP. Then for an execution that containsn iterations, its branch

coverage is de�ned asj
S

1� i � n B i j=jB j, i.e., all visited branches are accumulated for

an execution in calculating the branch coverage metric.

25

4.3. Experimental Subjects

We selected three real-world self-adaptive apps as our experimental subjects. They

run on different hardware platforms and undertake different adaptive tasks, including

automated driving-control (Robot-car [2]), runtime pro�le-switching (PhoneAdaptor

[4]) and city-wide navigation (SECONDO [23]).

The Robot-car app is the motivating example discussed earlier. The app for experi-

ments contains a full set of functionalities such as environmental sensing, map drawing

and collision avoidance. It has been under development over �ve years in our univer-

sity, and participated in various research activities [2][8][25]. The app contains 3,100

LOC.

The PhoneAdaptor app was originally proposed by Sama et al. [3] for illustrating

common bug patterns in adaptive apps, and later implemented by Liu et al. [4] for

public access. It runs on Android phones, and automatically adapts a phone's pro�le

(e.g., ring mode and vibration status) according to sensed environmental conditions

and user-con�gured rules. The app uses various built-in phone sensors, e.g., GPS,

Bluetooth and accelerometer. The app contains 1,400 LOC.

The SECONDO app simulates traf�c conditions in large-scale cities for scienti�c

experiments [23]. Mobile users navigate in a city, Berlin in our evaluation, to �nd

places of interest or track moving objects (e.g., a driving bus or walking person). The

app was developed by a research team at Fernuniversitat Hagen, and has participated

in quite a few research projects [26][27]. The app contains 38,000 LOC.

4.4. Experimental Preparation

We explain our preparations for the experiments below.

4.4.1. IAM Preparation

Each experimental subject app has a corresponding IAM model, and the model

includes, besides the appP itself, also an environmentE , initial con�guration C and

uncertainty speci�cationU, as explained earlier in Section 2.1. We further explain how

we prepared the IAM models for the three apps as follows.

26

The Robot-car app. The app came along with an accompanying environmental

simulator and we used it as its running environmentE . The app's initial con�gura-

tion C speci�es the space where the concerned car drives. We manually set the space

boundary for the simulated space. Then random obstacles and their layouts were au-

tomatically generated within the speci�ed boundary for the space. Besides, a pair of

initial position and direction as startup parameters for the car were also randomly gen-

erated as part ofC. The app's uncertainty speci�cationU was from the car's �eld test

results [2], containing error ranges for its installed ultrasonic sensors.

The PhoneAdaptor app. We setup up the PhoneAdaptor app by strictly follow-

ing its original speci�cation given by Sama et al. [3], which includes seven states and

18 adaptation rules. The app's environmentE consists of a smartphone emulator AVD

(Android Virtual Device) and other supporting software modules.E is able to feed sim-

ulated sensory data to the app through its host phone according to how the environment

is built and how the user walks in this environment.

For initial con�gurationC, we manually set the space boundary forE where the

app's host phone stays. Then random blocks and their locations were automatically

generated insideE. We also randomly generated a pair of start point and end point

for the phone's simulated user. More precisely, these initial settings of the environ-

ment served as constraints for specifying functions and contexts for blocks (e.g., home,

meeting room or exercise �eld) in the environment. These constraints were used to

generate corresponding sensor inputs when the user walked from the start point to the

end point in this simulated environment. The app's host phone is supposed to switch

its pro�le based on changing environmental conditions and user pre-con�gured rules

(e.g., enabling Bluetooth mode when entering a car or switching off ring tone when en-

tering a meeting room). The app's uncertainty speci�cationU mostly concerns GPS

sensor, and its error range was set according to existing studies [32][33].

The SECONDO app. We made the SECONDO app run in the simulated Berlin

city as mentioned, and we used its benchmark toolkit MWGen as its environment. It

could automatically build and customize a simulated city of Berlin and its residents

according to preset controlling parameters. It could also observe and manipulate a

simulated visitor in its built Berlin city for testing purposes.

27

The app's initial con�gurationC speci�es the whole street network of the city,

which contains more than 3,000 streets, 4,000 buildings, 80 bus routes and 10 metro

routes. We also used MWGen to automatically generate a pair of start point and des-

tination point for a visitor (taking a car, taxi, or simply walking) to this city, who is

supposed to travel from the start point to the destination point. MWGen generated the

travel plan based on its analysis on real-world people for their travelling activities. The

visitor is supposed to reach the destination, by following the app's suggested naviga-

tion. The app obtains the visitor's GPS location every 500 meters for optimizing its

navigation suggestions. The app's uncertainty speci�cationU also concerns GPS sens-

ing and was set similarly as in the PhoneAdaptor app. Due to GPS noise, a suggested

route may deviate from the optimal route and may lead the user to enter forbidden

places.

4.4.2. Other Preparations

Subject instrumentation and assertion check.We instrumented the three exper-

imental subjects for collecting their execution traces (e.g., taken branches, input and

output values) as well as values of their global variablesGP . We used assertions em-

bedded in the three experimental subjects for exposing failures. SIT and other testing

approaches were adapted for being able to monitor whether any assertion in an app

was violated when feeding test inputs to the app and observing its execution. For the

Robot-car app, its assertions check whether its concerned car crashes into any obstacle

and whether the car is too far from its right-hand obstacle. For the PhoneAdaptor app,

its assertions check whether any well-known fault patterns (e.g., adaptation race or cy-

cle [3]) exist. For the SECONDO app, its assertions check whether its visitor's current

route is optimal and whether he has been led into any forbidden place.

We illustrate how the assertions work by explaining two assertions in the SEC-

ONDO app. One assertion records the length of the visitor's actually taken route as

navigated by the app, and compares it with the length of a pre-calculated optimal route

from the start point to the destination point in the city. When the two lengths are found

to have a big difference, say 20%, the assertion is violated. The other assertion records

a set of locations that represent forbidden locations for this city. If the visitor is found

28

to appear in any of these locations, the assertion is violated.

Environmental preparation. We also modi�ed the code for environmental simu-

lators or emulators for collecting their execution traces (e.g., global variables, input and

output values). While capturing the latter two is relatively easy, we collected values of

speci�c parameters from the simulators or emulators as values of their corresponding

environmental global variablesGE . For the Robot-car app, we collected values of the

location and direction of the car and obstacle layout as forGE . For the PhoneAdaptor

app, we collected its user's spacial relationships between the preset blocks, e.g., inside

home and outside a meeting room as forGE . For the SECONDO app, we collected the

user's GPS location and his used transportation way as forGE .

Approach implementation. We implemented RT and DSE for comparison pur-

poses. While the former is easy, we built the latter by adapting Comedy [28], a con-

colic debugging tool built on Java PathFinder (JPF) [29]. Our DSE implementation

connects multiple iterations of an app's reaction loop and solves their path constraints.

We replaced JPF's original constraint solver with Z3 [30], which is considered to be

state-of-the-art in better solving constraints of different data types.

We implemented a controller for running caiipa and connecting it to Monkey [55]

for testing the PhoneAdaptor app. We did not compare SIT's effectiveness with caiipa

on the other two apps since they are not Android apps and cannot be supported by

caiipa. We also implemented a tool to validate the bugs detected by caiipa.

4.5. Experimental Design and Procedure

Test instances.Besides the three experimental subjects, we used MuJava [31] to

generate 135 mutants from the original apps, 45 for each, after excluding those that

do not compile. MuJava used its built-in mutation operators, like arithmetic opera-

tor replacement (AOR), conditional operator replacement (COR) and logical operator

replacement (LOR), for mutation.

For each original app, we prepared 32 different initial con�gurations. Consider-

ing that different initial con�gurations may lead to different experimental results (e.g.,

detected bugs), we randomly generated these initial con�gurations. For each mutated

app, we randomly selected four initial con�gurations from 32 ones for scale consider-

29

ation. Thus, we obtained a total of 636 test instances for experiments, 96 test instances

for original apps (3� 32), which are denoted as test setO, and 540 test instances for

mutated apps (135� 4), which are denoted as test setM.

Experimental procedure. We conducted experiments with the 636 test instances

to answer research questions, which took more than 600 hours. All experiments were

conducted on a PC with an Intel(R) Core(TM) i7 CPU@4.5GHz and 8GB RAM. We

�rst evaluated and compared the effectiveness and ef�ciency of SIT, RT, DSE and cai-

ipa in testing self-adaptive apps, in which each test was given a 10-min time bud-

get. Then we studied how different settings, e.g., uncertainty level and space-splitting

threshold, affect SIT's testing effectiveness and ef�ciency based on the 96 test instances

from the original apps. Finally, we compared SIT's testing ef�ciency with different op-

timization settings also based on the 96 test instances. In all experiments, whenever a

test instance failed (app bug detected), we moved on to the next test instance. In other

words, each test instance could fail at most once for each testing approach. In this

sense, detected bugs are considered distinct since the same test instance will not fail

twice for the same testing approach.

For RQ1, we compared detected bugs for SIT, RT and DSE using all 636 test in-

stances. We also compared detected bugs for SIT and caiipa using the 212 test in-

stances derived from the PhoneAdaptor app, which is the only app caiipa can support,

as mentioned earlier. Since mutation might change an app's branches accidentally, we

compared branch coverage for SIT, RT and DSE using only the 96 test instances from

test setO (based on original apps). We then compared testing ef�ciency (by means of

the number of detected bugs given the same time budget) for SIT, RT and DSE using

all 636 test instances. Finally, we also compared SIT, RT and DSE's testing ef�ciency

within a one-hour time budget using 50 randomly selected test instances from all 636

test instances, in order to validate our choice of the 10-min time budget.

For RQ2, we �rst studied the effect of different uncertainty levels. We compared

detected bugs for SIT, RT and DSE with different uncertainty levels (i.e., scaling the

applied error range to 20–100% of the original error ranges speci�ed by uncertainty

speci�cationU) using the 96 test instances from test setO (based on original apps).

Then we studied SIT's performance with different space-splitting threshold values,

30

Table 1: Comparison of detected bugs for SIT, RT and DSE

Approach
All subjects Robot-car PhoneAdaptor SECONDO

(636 test instances) (212) (212) (212)

SIT 581 (91.4%) 184 (86.8%) 202 (95.2%) 195 (92.0%)

RT 313 (49.2%) 76 (35.8%) 108 (50.9%) 129 (60.8%)

DSE 432 (69.0%) 126 (59.5%) 147 (69.3%) 159 (75.0%)

namely,1=4, 1=8, 1=16, 1=32 and1=64 of the error ranges fromU. We compared

detected bugs and testing ef�ciency (by means of the number of detected bugs given

the same time budget) for SIT with different threshold values also based the 96 test

instances from test setO.

For RQ3, we compared SIT's testing ef�ciency (by means of the time of exploring

the same iterations in executing experimental apps) with different optimization set-

tings using the 96 test instances from test setO. The optimization strategies includes

no optimization, reducing vertex retest redundancy only, reducing space subsumption

redundancy only, and reducing both redundancy types.

4.6. Experimental Results and Analyses

4.6.1. RQ1: Comparison of Effectiveness and Ef�ciency in Testing Self-adaptive Apps

We �rst compare detected bugs and branch coverage for testing effectiveness, and

then compare for testing ef�ciency.

SIT's comparison with RT and DSE on detected bugs.Table 1 compares SIT,

RT and DSE in their detected bugs with respect to all 636 test instances (212 for each

subject). We observe that SIT consistently detected more bugs in these test instances.

The improvement is 27.3–51.0%, 25.9–44.3% and 17.0–31.2% for the three subjects,

respectively. Overall, SIT improved the detection rate by 22.4–42.2%. DSE performed

better than RT as expected, since it used the same time budget to explore different

program paths in apps. Besides, we observe that all approaches detected less bugs

for the Robot-car app than the other two subjects. After a closer study, we found

that the Robot-car app has relatively more dif�cult bugs. These bugs manifested after

15 iterations, while those for the PhoneAdaptor and SECONDO apps did after 5–10

31

iterations. Then given the same time budget, all approaches detected less bugs for the

Robot-car app. Furthermore, we did not observe any bug detected in the �rst iteration.

This exhibits how testing self-adaptive apps differs from, and is also more challenging

than, testing of traditional programs.

The results also reveal the different nature of RT and DSE. In relatively shallower

iterations (e.g., before the5–th iteration), DSE detected more bugs than RT (93.4–

128% more). This is because RT can easily miss many dedicated paths in apps due

to its simple (random) strategy for generating test inputs while DSE uses a constraint

solver to consider every possible path carefully. On the other hand, in relatively deeper

iterations (e.g., after the10–th iteration), RT detected more bugs than DSE (236–268%

more). This is because DSE cannot go for too deep iterations when given the same

time budget since constraint solving is computation-intensive while RT can easily go

to those deep iterations.

Table 2 compares the distribution of the detected bugs for SIT, RT and DSE. We

partition all detected bugs into seven groups, by whether they can be detected by a

particular approach. This is annotated by a triple (x, y, z), in whichx indicates “yes”

by “+ ” or “no” by “ � ” for SIT, andy andz for RT and DSE in a similar way. Table

data can tell the uniqueness of an approach in testing self-adaptive apps. In brief, most

(over 95%) of the bugs detected by the other approaches could also be detected by SIT.

On the other hand, altogether 138 bugs (23.6%) were detectedby and only bySIT. The

counterparts for RT and DSE are 8 and 12, respectively, which are much less (94.2%

and 91.3% less). This suggests that our SIT is indeed effective in detecting bugs for

self-adaptive apps and this effectiveness does not rely on certain initial con�gurations.

We also observe that both RT and DSE were indeed able to detect some bugs that

could not be detected by SIT approach (6–12 or 2.8–5.7% bugs detected by RT, and

8–12 or 3.8–5.7% bugs detected by DSE). We analyzed these bugs. For the bugs de-

tected by RT but not by SIT, we found that most of them (83.3–87.5%) were detected

after the10–th iteration in executing an app. For the bugs detected by DSE but not by

SIT, most of them (70–87.5%) were detected before the5–th iteration in executing an

app. Such results have been caused by the different nature of RT and DSE. We further

explain it below.

32

First, RT can go into relatively deeper iterations in executing an app when given

the same time budget, due to its simple (random) strategy for generating test inputs.

This explains why RT could detect some bugs SIT did not detect in relatively deeper

iterations (e.g., after the10–th iteration). However, this strategy also sacri�ced RT's

completeness in testing, as RT failed to detect many bugs (69.3%) in relatively shal-

lower iterations (e.g., before the5–th iteration) as compared to SIT. SIT does not suffer

this limitation, because it tries to avoid exercising the same path in app execution by

systematically exploring different partitions in an input space. Our experimental re-

sults (Figure 7) show that SIT achieved higher branch coverage (12.3–47.9% higher)

than RT.

Second, DSE considers every path in executing an app, and tries that path as long as

it can generate a corresponding test input by constraint solving. As such, it can exercise

more paths in relatively shallower iterations (e.g., before the5–th iteration) in execut-

ing an app, when given the same time budget. This explains why DSE could detect

some bugs SIT did not detect in relatively shallower iterations. However, as constraint

solving is computation-intensive, DSE cannot go for too deep iterations when given

the same time budget. Actually, DSE explored less iterations (22.2–116.7% less) than

SIT when given the 10-min time budget. SIT does not suffer this limitation, because its

test input generation is light-weighted. Our experimental results (Figure 8) show that

SIT detected bugs much faster than DSE. SIT detected 90% bugs (524 in number) it

could detect in 300 sec, while DSE cost 550 sec (83.3% more time) for detecting 90%

bugs (390 in number). If one �xes the time budge to be 300 sec for DSE as well, it can

detect only 117 bugs, which is much less than 524 bugs detected by SIT (77.7% less).

SIT's comparison with caiipa on detected bugs.Table 3 compares SIT and caiipa

in their detected bugs with respect to the 212 test instances derived from the PhoneAd-

pator app. We observe that caiipa detected slightly more bugs (7 or 3.4% more) than

SIT, but most of its detected bugs are false positives (78.5%). The reason for caiipa's

high false positive rate is that it failed to consider the complete interaction and adap-

tation loop between the app and its environment. In other words, the relationships be-

tweenI P values across different iterations in generated test inputs were not respected.

For example, caiipa might generate a sequence of failure-inducing test inputs indicat-

33

Table 2: Comparison of bug distribution for SIT, RT and DSE

Bug groups All subjects Robot-car PhoneAdaptor SECONDO

(+ , + , +) 242 62 83 97

(+ , + , �) 45 8 13 24

(+ , � , +) 160 56 54 50

(+ , � , �) 138 62 52 24

(� , + , +) 18 4 7 7

(� , + , �) 8 2 5 1

(� , � , +) 12 4 3 5

Table 3: Comparison of detected bugs for SIT and caiipa

Approach
Detected

bugs

False

positives

Distribution of true bugs

(+ , +) (+ , �) (� , +)

SIT 202 (95.2%) 0
42 160 3

caiipa 209 (98.6%) 164 (78.5%)

ing that the user's two consecutive GPS locations are too far away with each other for

the user to reach in one iteration. In our experiments, we replayed sequences of failure-

inducing test inputs from the bug reports of caiipa in our IAM model to check whether

the app and its environment interact with each other as expected. In each iteration, we

executed the IAM model to derive the app's input spaceis for the next iteration. If the

I P value of the next iteration (from the bug reports of caiipa) did not �t into the space

is, then the corresponding bug was considered as a false positive.

SIT did not incur any false positive since it already validated all detected bugs

through concrete execution of the app in its environment. Considering true positives

only, SIT detected 339% more bugs than caiipa. We also analyzed the bug distribution

for SIT and caiipa, as in Table 3. Apparently, most of the bugs detected by caiipa

can also be detected by SIT except only three ones. This shows our SIT's unique

effectiveness in detecting bugs for self-adaptive apps, as compared to other approaches

catered for testing mobile apps.

34

SIT's comparison with RT and DSE on branch coverage.Figure 7 compares

SIT, RT and DSE in branch coverage with respect to the 96 test instances from the

original apps. Data were averaged for each subject. For each approach, its connected

line segments illustrate achieved branch coverage from its �rst iteration to the last it-

eration it could reach within the given time budget. We observe that SIT achieved

the highest branch coverage (12.3–47.9% higher than RT and 13.8–21.4% higher than

DSE), as well as the most iterations (6.7–36.8% more than RT and 22.2–116.7% more

than DSE). This explains why SIT detected more bugs than RT (31.2–54.3% more) and

DSE (17–27.3% more) as reported earlier. It is easily understandable that RT achieved

low coverage since its strategy was purely random in exploring input spaces, but DSE's

low coverage needs more explanations. DSE tries to consider every path in executing

an app, and exercises that path as long as it can generate a corresponding test input by

constraint solving. However, this can be very time-consuming and cause it to fail to bal-

ance the testing's completeness and ef�ciency. The experimental results show that DSE

achieved the highest branch coverage at the beginning since it worked in a guided way,

but this strength was quickly gone when it stopped exploring more iterations within the

given time budget. Beside, DSE also suffered failed constraint solving. For example,

in the SECONDO app DSE's explored branch coverage was instead lower than that of

our SIT even for the same number of iterations.

SIT's comparison with RT and DSE on testing ef�ciency. Figure 8 compares

SIT, RT and DSE on testing ef�ciency (by means of the number of detected bugs given

the same time budget) with respect to all 636 test instances. Figure 9 gives detailed

results with respect to each subject. Overall, SIT detected bugs much faster than the

other two approaches. It detected 90% bugs it could detect within all time budget in

300 sec (50% budget) only, while the counterpart time is 500 sec (83% budget) and

550 sec (92% budget) for RT and DSE, respectively. Besides, RT is unstable in that it

detected more bugs early and less later for the PhoneAdaptor and SECONDO apps, but

things reversed for the Robot-car app. This re�ects its inherent randomness. Regarding

DSE, it seems to miss quite a lot of bugs in the early stage, especially for the Robot-car

app. We conjecture that this is because DSE spent too much time on constraint solving,

and this made it detect much less bugs within �rst several minutes. That is, given the

35

Branch

coverage (%)

Iterations (#)
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

SIT RT DSE

(a) Robot-car

6

1

6

1

8

2

8

5

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

SIT RT DSE
Branch

coverage (%)

Iterations (#)

(b) PhoneAdaptor

6

1

6

1

8

2

8

5

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SIT RT DSE
Branch

coverage (%)

Itetrations (#)

(c) SECONDO

Figure 7: Comparison of branch coverage for SIT, RT and DSE (with respect to different subjects)

same time budget, while DSE was working on early iterations, SIT already worked on

later iterations. As such, for the same time budget, SIT can detect bugs from more

iterations than DSE. Besides, failed constraint solving also reduced the bugs that can

be detected by DSE, while SIT does not require constraint solving at all. Altogether,

we observe that our SIT is both light-weight and effective. We also notice that although

the PhoneAdaptor app uses a non-manipulatable environment, it did not take SIT much

longer time to test this app. This is because PhoneAdaptor's executions contain less

iterations (usually less than 10), which mean restarting app executions does not bring

much overhead.

Figure 10 compares SIT, RT and DSE on testing ef�ciency (by means of the number

of detected bugs given the same time budget) with a one-hour time budget for 50 test

instances randomly selected from all 636 test instances. The result shows that most

detected bugs by SIT and DSE were found in the �rst 10 min, e.g., 82.6% bugs for SIT

and 77.1% bugs for DSE. This justi�es our selection of 10 min as the time budget for

most experiments (data of RT are not considered due to its random nature).

Answer to RQ1. Our SIT approach can test self-adaptive apps effectively and

ef�ciently. Compared with existing approaches (RT, DSE and caiipa), SIT can detect

36

0

15

30

45

60

75

90

105

120

135

SIT RT DSE

Time

cost (s)

Detected

bugs (#)

Figure 8: Comparison of testing ef�ciency for SIT, RT and DSE (overall, 10-min time budget)

6

1

6

1

8

2

8

5 0

5

10

15

20

25

30

35

40

45

SIT RT DSE
Detected

bugs (#)

Time

cost (s)

(a) Robot-car

6

1

6

1

8

2

8

5 0

10

20

30

40

50

60

70

80

SIT RT DSE
Detected

bugs (#)

Time

cost(s)

(b) PhoneAdaptor

0

5

10

15

20

25

30

35

40

SIT RT DSE

Time

cost (s)

Detected

bugs (#)

(c) SECONDO

Figure 9: Comparison of testing ef�ciency for SIT, RT and DSE (with respect to different subjects, 10-min

time budge)

37

0

5

10

15

20

25

30

35

SIT RT DSEDetected

bugs (#)

Time cost

(min)

Figure 10: Comparison of testing ef�ciency for SIT, RT and DSE (overall, one-hour time budget)

more bugs, as well as more unique bugs that cannot be detected by other approaches.

It can also detect bugs more quickly by exploring more iterations and covering more

branches.

4.6.2. RQ2: Study of Impact of Different Settings on SIT

SIT's comparison with RT and DSE on detected bugs using different uncer-

tainty levels. We studied how the uncertainty level affects the bug detection in terms

of detected bugs for different testing approaches. Figure 11 compares SIT, RT and DSE

in their detected bugs under different uncertainty levels with respect to the 96 test in-

stances from test setO. Data were averaged for each subject. We observe that for all

testing approaches, the number of detected bugs consistently increases with the growth

of uncertainty level. For example, comparing the setting of 100% uncertainty level to

that of 20% uncertainty level, SIT detected 414–650% more bugs, RT detected 475–

850% more bugs, and DSE detected 525–600% more bugs. This shows that uncertainty

indeed plays an important role in causing self-adaptive apps to fail, and more severe un-

certainty implies more failing cases, as well as more responsible program bugs (failing

to consider such cases). We also observe that SIT detected always the most bugs under

all uncertainty levels, showing its effectiveness in testing self-adaptive apps. Besides,

the differences between SIT and the other two approaches increase with the growth

of uncertainty level. This is probably because increasing the uncertainty level causes

the growth of an app's state space, which then leads to more challenges for traditional

38

0

5

10

15

20

25

30

20 40 60 80 100

SIT RT DSE
Detected

bugs (#)

Uncertianty

level (%)

(a) Robot-car

0

5

10

15

20

25

30

35

20 40 60 80 100

SIT RT DSE
Detected

bugs (#)

Uncertianty

level (%)

(b) PhoneAdaptor

0

5

10

15

20

25

30

35

20 40 60 80 100

SIT RT DSEDetected

bugs (#)

Uncertianty

level (%)

(c) SECONDO

Figure 11: Comparison of detected bugs for SIT, RT and DSE under different uncertainty levels (with respect

to different subjects)

testing approaches to detect bugs.

SIT's performance using different space-splitting threshold values on testing

effectiveness.We also studied how the space-splitting threshold affects the effective-

ness and ef�ciency of our SIT approach in testing self-adaptive apps. Table 4 compares

SIT's detected bugs with different threshold values based on the 96 test instances from

test setO. The column “Bugs” represents the number of detected bugs, column “Iter.”

represents the average number of iterations explored by SIT, and column “B.C.” repre-

sents the branch coverage. The experimental results show that SIT detected bugs satis-

factorily when the threshold was set to 1/16 of error ranges, and also roughly detected

the most bugs (2–12 or 7.4–74.6% more) as compared to those under other threshold

value settings. This can be explained by the fact that SIT achieved the highest branch

coverage (1–29% higher than those under other settings) when the threshold value was

set to 1/16 of error ranges.

Table 4 also compares the distribution of the detected bugs of SIT under different

threshold value settings, in which column “U. Bugs” represents the number of unique

39

Table 4: Comparison of testing effectiveness for SIT under different space-splitting threshold values

Threshold

values

Robot-car PhoneAdaptor

Bugs U. Bugs C. Bugs Iter. B.C. Bugs U. Bugs C. Bugs Iter. B.C.

1/4 19 1 16 33 58% 21 1 19 11 48%

1/8 24 3 20 28 83% 25 2 21 11 61%

1/16 26 4 20 21 85% 30 3 26 11 76%

1/32 21 1 18 18 64% 31 4 27 10 77%

1/64 18 1 17 13 56% 23 2 19 9 54%

Threshold

values

PhoneAdaptor

Bugs U. Bugs C. Bugs Iter. B.C.

1/4 17 1 15 24 26%

1/8 24 1 22 18 30%

1/16 29 3 24 16 39%

1/32 27 3 22 15 36%

1/64 25 1 24 12 30%

bugs that can only be detected under one threshold value setting, and “C. Bugs” rep-

resents the number of common bugs that can be detected under at least three threshold

value settings. The results tell that different threshold values indeed enable SIT to de-

tect some unique bugs (3.1–12.5%) that cannot be detected under other threshold value

settings. On the other hand, most of the detected bugs (62.5–93.6%) can be detected

under at least three threshold value settings. This suggests that SIT's effectiveness in

testing self-adaptive apps is not limited to speci�c space-splitting threshold value set-

tings.

Figure 12 compares testing ef�ciency (by means of the number of detected bugs

given the same time budget) of SIT with different threshold value settings. We ob-

serve that a larger threshold value could enable SIT to detect bugs more quickly than

a smaller threshold value when given the same time budget, since it helps SIT to exer-

cise an app into deeper iterations. So large threshold values can help quickly answer

whether an app can fail within a limited time budget, while small threshold values can

be used to explore different failing executions precisely when the time budget is suf�-

cient.

Answer to RQ2. Regarding the uncertainty level, SIT can detect more bugs with

40

0

2

4

6

8

10

12

14

0-100 100-200 200-300 300-400 400-500 500-600

1/4 1/8 1/16 1/32 1/64Detected

bugs (#)

Time

cost (s)

(a) Robot-car app

0

2

4

6

8

10

12

14

0-100 100-200 200-300 300-400 400-500 500-600

1/4 1/8 1/16 1/32 1/64Detected

bugs (#)

Time

cost (s)

(b) PhoneAdaptor app

0

2

4

6

8

10

12

0-100 100-200 200-300 300-400 400-500 500-600

1/4 1/8 1/16 1/32 1/64Detected

bugs (#)

Time

cost (s)

(c) SECONDO app

Figure 12: Comparison of testing ef�ciency for SIT under different space-splitting threshold values (with

respect to different subjects)

the growth of uncertainty level associated with self-adaptive apps. SIT detected always

the most bugs under all uncertainty levels, as compared with existing approaches (RT

and DSE). Regarding the space-splitting threshold, SIT's testing effectiveness peaked

when the threshold was set to 1/16 of error ranges, with which it can roughly detect the

most bugs as compared to other threshold settings when given the same time budget.

SIT's testing ef�ciency decreased with the growth of the threshold value, in which a

larger threshold value could enable SIT to detect bugs more quickly than a smaller

threshold value when given the same time budget.

4.6.3. RQ3: Study of Impact of Different Optimization Settings on SIT

Our earlier comparisons were made based on SIT with all optimizations enabled.

We �nally study how the optimization setting helps on SIT's testing ef�ciency. Fig-

ure 13 compares SIT's testing ef�ciency (by means of the time of exploring the same

iterations in executing experimental apps) with different optimization settings for the

96 test instances from the original apps (data averaged for each subject). We consid-

ered four optimization settings, namely, disabling all optimizations (denoted as “With-

41

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Without OPs With OP1
With OP2 With both OPs

Time

Cost (s)

Iterations (#)

(a) Robot-car

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11

Without OPs With OP1

With OP2 With both OPs

Time

cost (s)

Iterations (#)

(b) PhoneAdaptor

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Without OPs With OP1
With OP2 With both OPs

Time

cost (s)

Itetrations (#)

(c) SECONDO

Figure 13: Comparison of testing ef�ciency for SIT with different optimization settings

out OPs”), reducing vertex retest redundancy only (denoted as “With OP1”), reduc-

ing space subsumption redundancy only(denoted as “With OP2”), and reducing both

redundancy (denoted as “With both OPs”). We observe that when disabling all opti-

mizations, SIT could only explore up to 4–5 iterations before it drained out all time

budget. The reduction of explored iterations ranged from 63.6% to 80.8% for different

subjects, which is signi�cant. Considering different optimizations, reducing space sub-

sumption redundancy is more effective than reducing vertex retest redundancy, which

enables SIT to explore 50.0–72.2% more iterations for different subjects. This is be-

cause vertex retest redundancy only causes a polynomial ampli�cation on the number

of explored input spaces, while space subsumption redundancy causes an exponential

ampli�cation. We note that for PhoneAdaptor, the “With both OPs” curve did not reach

the limit of 600 sec and this is because our optimized SIT �nished all its test instances

by then. Without optimizations, SIT spent time in an exponential way, while with op-

timizations, it was almost in a linear way. This makes our optimized SIT useful in

practice.

Answer to RQ3. Our optimizations signi�cantly increase SIT's ef�ciency and scal-

42

ability in the bug detection for self-adaptive apps. Speci�cally, reducing space sub-

sumption redundancy is more effective than reducing vertex retest redundancy.

4.7. Threats to Validity

Internal threats. We set 10 min as the time budget for testing each test instance

in experiments, and this might threaten the internal validity of our evaluation, causing

different comparison conclusions. This setting is for scale-controlling since we had to

compare three testing approaches with respect to 636 test instances, which are many.

We note that we are comparing different approaches' bug detection capabilities under

a limited time budget, which is a realistic setting in practice. Besides, 10 min suf�ces

for this purpose as bugs detected in the �rst 10 min occupied about 80% bugs detected

in one hour, as mentioned earlier. Furthermore, our experimental data show that SIT

detected bugs clearly faster than RT and DSE, with increased branch coverage and

more explored iterations. The three aspects together justify SIT's effectiveness. The

likelihood of RT and DSE suddenly beating SIT with a more time budget is low.

External threats. Two threats might weaken the external validity of our evalua-

tion. First, we conducted experiments with third-party simulators or emulators. This

is for controlling purposes, e.g., time controlling as the Robot-car app needs recharg-

ing after 15-min driving, and parameter controlling as we could get and set values of

environmental variables easily, as mentioned earlier. Nevertheless, our SIT approach

does apply to real-world apps with some platform-speci�c support. For example, The

PhoneAdaptor app can already run on real Android phones, since Android provides di-

rect access to its resource status (e.g., ring mode, vibration level and Bluetooth switch).

For the Robot-car app, the only required support is to reset the car's location to an ear-

lier one if required. Currently, we do not have a mechanical infrastructure help on this

(e.g., using another robot to move the car with its arm, which can be expensive and

time-consuming). Although using a mechanical infrastructure can introduce error in

resetting environmental variables, our SIT approach already considers this by allow-

ing the modeling of error ranges in uncertainty speci�cations. This makes our SIT

approach still useful for future extensions with such mechanical support.

Second, we selected only three experimental subjects and the number is not many.

43

This is because a comprehensive evaluation requires the support of suitable environ-

ments, which should be observable and resettable. Although the selected subjects are

not many, we tried to make them representative as real-world self-adaptive apps. These

subjects cover different functionalities (e.g., automated driving, location-based service

and navigation) and also use different prevailing platforms (e.g., ARM-based robot-car,

Android-based smartphone and commodity PC). Therefore, our selected experimental

subjects can represent real-world self-adaptive apps to some extent. Nevertheless, try-

ing our SIT approach on more types of apps and platforms still deserves for better

evaluation.

Theoretical reliability. It is possible that our implementation biased for our own

SIT approach. To alleviate this threat, we made all approaches under test use a shared

app/environment interaction module (interaction , as discussed earlier in Section

4.1), which feeds the output from one side (app/environment) as the input to the other

side (environment/app), and drives the interaction continually. Each approach only

implements its internal logic for deciding test inputs. We implemented RT ourselves

as it is simple, and implemented DSE and caiipa based on available code from existing

work [24][28] .

5. RELATED WORK

In this section, we discuss related work on handling uncertainty for self-adaptive

apps and testing for self-adaptive, context-aware, mobile or numeric programs.

Uncertainty in self-adaptive apps.Uncertainty causes challenges to quality assur-

ance for self-adaptive apps. Ramirez et al. [21] presented a taxonomy of uncertainty

factors typical for self-adaptive apps. They include requirement uncertainty, design

uncertainty and runtime uncertainty. Many pieces of work focus on alleviating impact

of design uncertainty on self-adaptive apps. Ghezzi et al. [34] proposed an adapta-

tion framework to manifest non-functional uncertainty via model-based development.

Famelis et al. [35] used partial models to specify uncertainty and reason its impact

on app functionalities. Esfahani et al. [36] proposed framework support for designing

decision-making functions for self-adaptive apps, which helps avoid misguided behav-

44

ior and subjective preferences. Different from them, we in this article focus on runtime

uncertainty and check whether a self-adaptive app's implementation has considered

uncertainty precisely and adequately.

Testing self-adaptive apps.Some pieces of work focus on testing techniques to

ensure quality of self-adaptive or context-aware apps. Fredericks et al. [37] used utility

functions to guide the design and adaptation of test cases for self-adaptive apps. Xu et

al. [8] proposed monitoring error patterns to track responsible defects in context-aware

adaptation. Tse et al. [12] relied on metamorphic relations to decide whether contexts

and their upper-layer apps behave abnormally. Ramires et al. [14] proposed discover-

ing speci�c combinations of environmental conditions that produce violated behavior

in adaptive systems. These pieces of work used different observations, but in general

still relied on random testing. This implies that they do not guarantee systematic ex-

ploration of an app's space. As a contrast, our SIT approach explores an app's input

space and its corresponding behavior in a systematic and guided way.

Testing context-aware apps.Some pieces of work on testing context-aware apps

also consider interaction between apps and their environments. Griebe et al. [38] pro-

posed a model-based testing approach that generates test cases using model transforma-

tion on context-enriched design-time system models. Amal�tano et al. [39] used pre-

de�ned event patterns to generate context event traces to explore different behaviors for

context-aware apps. Jiang et al. [40] proposed a framework to simulate both context-

data production and service execution for testing context-aware apps. The framework is

also able to generate simulated context data based on user-speci�ed operational com-

ponents, such as virtual sensors, devices, and even human beings. Wang et al. [13]

improved test coverage for context-aware apps by utilizing context-switching points in

apps. Lu et al. [41] proposed a family of test adequacy criteria to cover new data �ows

induced by interactions between an app and its underlying middleware. They then ex-

tended the work to support testing apps with external inconsistency resolution services

[46], which call for new coverage criteria. These pieces of work echo our work in that

both consider challenges from interactions between an app with its environment, but

our work further considers uncertainty in the interactions, which include both environ-

mental sensing and behavioral adaptation.

45

Testing mobile apps.Self-adaptive apps resemble some mobile apps in that such

apps have to acquire inputs from environments. Liang et al. [20] proposed contextual

fuzzing to build a comprehensive library of contexts of different types for mobile apps

and a learning-based technique to explore the context space for apps testing. Rege

et al. [19] used existing user traces to generate realistic and correlated context traces

automatically for the propose of guiding simulator-based mobile apps testing. Griebe

et al. [17] gave a model-based approach to generating useful contextual inputs for

mobile apps by deducing context information from design-time system models. These

pieces of work differ from our work in that they treat environment as a simple source

for an app's input, while the app's adaptation and reaction on the environment is largely

simpli�ed or overlooked. Our approach focuses on the many iterations between apps

and their environments, and this implies that both apps and their environments can

affect each other.

Other pieces of work focus on testing event-based mobile apps or GUI testing. Yel

et al. [42] proposed an approach to analyzing GUI models during the testing process

and generating corresponding event sequences for testing based on GUI models de-

rived from mobile apps. Adamsen et al. [43] presented an approach that leverages

existing test cases such that each test case is systematically exposed to adverse con-

ditions where certain unexpected events may interfere with the test execution. Anand

et al. [44] studied how to generate sequences of events automatically and systemati-

cally based on concolic testing. The approach alleviated the path-explosion problem

by checking conditions from program executions to identify subsumption relationships

between different event sequences. We believe that these approaches may not be di-

rectly applicable to testing self-adaptive apps since our targeted apps may not have

GUIs (e.g., two of our experimental subjects do not contain any GUI, while the re-

maining one has a very simple GUI but that is not our testing focus; we are testing an

app's interaction with its environment) and may not necessarily be event-based.

Testing numeric programs. Self-adaptive apps also resemble some numeric pro-

grams in that such apps often take sensory data as inputs, which range in a scope. Some

pieces of work focused on testing numeric programs. For example, Chen et al. [47]

studied the diversity nature of adaptive random testing, which is useful for partitioning

46

input space and testing numeric programs. Bao et al. [22] proposed white-box sam-

pling to test scienti�c computation programs with inputs of uncertainty. Chaudhuri et

al. [48] used static analysis to quantify a numeric program's robustness to inputs of un-

certainty, by proving whether the program has encoded a functionality in a robust way.

The test generation part of our work was inspired by white-box sampling, but we ex-

tended its idea to multi-dimensional sensory data for multiple iterations, and enhanced

its effectiveness by taking into account sensing and adaptation uncertainty as well as

optimizations for effective iteration exploration.

6. Conclusion and Future Work

In this article, we focus on testing self-adaptive apps. We analyzed characteristics

of such apps and studied their challenges to software testing. We proposed a novel

approach, named SIT, to testing self-adaptive apps in a systematic and light-weight

way. Our experimental evaluation reported promising results, showing that SIT can

detect more bugs by covering more code and exploring more iterations, but with smaller

time cost, as compared with existing work.

Our work still has limitations. It currently relies on app-speci�c support if an app's

running environment cannot be easily manipulated for testing. Still, it is understandable

since such apps themselves also require additional hardware to run as platforms, and

such support can be regarded as necessary components of platforms, not to mention

that some platforms (e.g., Android system) already have such support.

Besides, the work also brings new research opportunities. First, we assume that

input parameters to an appP should take values from continuous domains since SIT

uses sampling to exploreP's input space. Continuous input values enable one to split

an input space precisely and obtain meaningful samples asP's input values. This

setting applies to many real-world self-adaptive apps, which take sensory data as inputs,

which are naturally continuous. However, this setting does not directly apply to apps

with discrete input values. One reason is that dichotomy no longer works for splitting

an input space of discrete input values.. Even if it can be alleviated by special treatment,

a more serious reason is that appP's behavior may depend more likely on certain

47

discrete input values for decision making. This makesP's behavior may no longer

change gradually with the change in input values, and SIT might miss critical program

paths in its exploration in testingP. One possible way is to �rst learn the relationships

between the program pathsP will take and the range of input values fed toP, and

then use such relationships to guide the splitting of an input space. Clearly, this needs

further research and validation, and we keep it as future work.

Second, the assertions we used to de�ne program failures were composed manually

in apps. Such assertions are closely related to the apps' speci�cations and only use

observable variables of appP and environmentE , i.e., the inputs and outputs ofP and

E. It might be possible to derive such assertions automatically for self-adaptive apps,

as suggested by existing work, e.g., Zoom-In [53] and MuTest [54]. One advantage

of automatic assertion generation is that it requires less knowledge about targeted apps

than manually writing assertions for them. Another advantage is that automatically-

generated assertions could be de�ned on values of internal variables (i.e., not sensor

variables) in such apps, which could provide a more accurate monitoring of an app's

internal status. We are also working along this line.

Acknowledgment

This work was supported in part by National Basic Research 973 Program

(Grant No. 2015CB352202), and National Natural Science Foundation (Grant Nos.

61472174, 91318301, 61321491) of China.

References

[1] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, “Composing

adaptive software,”Computer, vol. 37, no. 7, pp. 56C64, 2004.

[2] W. Yang, C. Xu, Y. Liu, C. Cao, X. Ma, and J. Lu, “Verifying selfadaptive ap-

plications suffering uncertainty,” inProceedings of the 29th ACM/IEEE Interna-

48

tional Conference on Automated Software Engineering, ser. ASE '14, 2014, pp.

199C210.

[3] M. Sama, D. S. Rosenblum, Z. Wang, and S. Elbaum, “Model-based fault de-

tection in context-aware adaptive applications,” inProceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, ser.

SIGSOFT '08/FSE-16, 2008, pp. 261C271.

[4] http://sccpu2.cse.ust.hk/afchecker/phoneadapter.html.

[5] http://www.twofortyfouram.com.

[6] D. Kulkarni and A. Tripathi, “A framework for programming robust context-

aware applications,”IEEE Trans. Softw. Eng., vol. 36, no. 2, pp. 184C197, 2010.

[7] M. Sama, S. Elbaum, F. Raimondi, D. S. Rosenblum, and Z. Wang, “Context-

aware adaptive applications: Fault patterns and their automated identi�cation,”

IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 644C661, Sep. 2010.

[8] C. Xu, S. C. Cheung, X. Ma, C. Cao, and J. Lu, “Adam: Identifying defects in

context-aware adaptation,”J. Syst. Softw., vol. 85, no. 12, pp. 2812C2828, 2012.

[9] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H.

Muller, M. Pezze, and M. Shaw, “Engineering self-adaptive systems through

feedback loops,” inSoftware engineering for self-adaptive systems. Springer,

2009, pp. 48C70.

[10] B. H. e. a. Cheng, “Software engineering for self-adaptive systems, lncs volume

5525,” 2009, ch. Software Engineering for Self-Adaptive Systems: A Research

Roadmap, pp. 1C26.

[11] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming uncertainty in selfadaptive

software,” inProceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering, ser. ESEC/FSE

'11, 2011, pp. 234C244.

49

[12] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen, “Testing context-sensitive

middleware-based software applications,” inProceedings of the 28th Annual In-

ternational Computer Software and Applications Conference - Volume 01, ser.

COMPSAC '04, 2004, pp. 458C466.

[13] Z. Wang, S. Elbaum, and D. S. Rosenblum, “Automated generation of context-

aware tests,” inProceedings of the 29th International Conference on Software

Engineering, ser. ICSE '07, 2007, pp. 406C415.

[14] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, and D. B. Knoester, ”Automatically

exploring how uncertainty impacts behavior of dynamically adaptive systems,” in

Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering, ser. ASE '11, 2011, pp. 568C571.

[15] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random test-

ing,” in Proceedings of the 2005 ACM SIGPLAN Conferenceon Programming

Language Design and Implementation, ser. PLDI '05, 2005, pp. 213C223.

[16] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,” in

Proceedings of the 10th European Software Engineering Conference Held Jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, ser. ESEC/FSE-13, 2005, pp. 263C272.

[17] T. Griebe and V. Gruhn, “A model-based approach to test automation for context-

aware mobile applications,” inProceedings of the 29th Annual ACM Symposium

on Applied Computingser. SAC'14. 2014, pp. 420-427.

[18] V. Vieira, K. Holl, and M. Hassel, “A context simulator as testing support for

mobile apps,” inProceedings of the 30th Annual ACM Symposium on Applied

Computingser. SAC'15, 2015, pp. 535-541.

[19] M. R. Rege, V. Handziski, and A. Wolisz, “Poster: A context simulation har-

ness for realistic mobile app testing,” inProceedings of the 13th Annual In-

ternational Conference on Mobile Systems, Applications, and Servicesser. Mo-

biSys'15, 2015, pp. 489-489.

50

[20] C. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson, H. Liu, Y.

Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao, “Caiipa: automated large-scale

mobile app testing through contextual fuzzing,” inProceedings of the 20th annual

international conference on Mobile computing and networkingser. MobiCom-14,

2014, pp. 519-530.

[21] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A taxonomy of uncertainty

for dynamically adaptive systems,” inProceedings of the 7th International Sym-

posium on Software Engineering for Adaptive and Self-Managing Systems, ser.

SEAMS '12, 2012, pp. 99C108.

[22] T. Bao, Y. Zheng, and X. Zhang, “White box sampling in uncertain data pro-

cessing enabled by program analysis,” inProceedings of the ACM International

Conference on Object Oriented Programming Systems Languages and Applica-

tions, ser. OOPSLA '12, 2012, pp. 897C914.

[23] “SECONDO,” http://dna.fernuni-hagen.de/Secondo.html/index.html.

[24] “caiipa,” http://research.microsoft.com/en-us/projects/contextual-fuzzing/

[25] C. Xu, W. Yang, X. Ma, C. Cao, and J. Lu, “Environment rematching: Toward

dependability improvement for self-adaptive applications,” inProceedings of the

28th ACM/IEEE International Conference on Automated Software Engineering,

ser. ASE '13, 2013, pp. 592C597.

[26] J. Xu and R. H. Guting, “Mwgen: A mini world generator,” inProceedings of

the 2012 IEEE 13th International Conference on Mobile Data Management, ser.

MDM '12, 2012, pp. 258C267.

[27] C. Duntgen, T. Behr, and R. H. Guting, “Berlinmod: A benchmark for moving

object databases,”The VLDB Journal, vol. 18, no. 6, pp. 1335C1368, 2009.

[28] H. Jin, Y. Jiang, N. Liu, C. Xu, X. Ma, and J. Lu, “Concolic metamorphic de-

bugging,” inProceedings of the 2015 IEEE 39th Annual Computer Software and

Applications Conference, ser. COMPSAC '15, 2015.

51

[29] “Java Path Finder,” http://babel�sh.arc.nasa.gov/trac/jpf/.

[30] L. De Moura and N. Bj?rner, “Z3: An ef�cient smt solver,” inProceed-

ings of the Theory and Practice of Software, 14th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, ser.

TACAS'08/ETAPS'08, 2008, pp. 337C340.

[31] “MuJava,” http://cs.gmu.edu/ offutt/mujava/.

[32] T. Toftkjær and M. Baun Kjærgaard, “The impact of sensor errors and building

structures on particle �lter-based inertial positioning,”Pervasive Mob. Comput.,

vol. 8, no. 5, pp. 764C776, 2012.

[33] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization from mere

connectivity,” inProceedings of the 4th ACM International Symposium on Mobile

Ad Hoc Networking, ser. MobiHoc '03, 2003, pp. 201C212.

[34] C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tamburrelli, “Managing nonfunc-

tional uncertainty via model-driven adaptivity,” inProceedings of the 2013 Inter-

national Conference on Software Engineering, ser. ICSE '13, 2013, pp. 33C42.

[35] M. Famelis, R. Salay, and M. Chechik, “Partial models: Towards modeling and

reasoning with uncertainty,” inProceedings of the 34th International Conference

on Software Engineering, ser. ICSE '12, 2012, pp. 573C583.

[36] N. Esfahani, “A framework for managing uncertainty in self-adaptive software

systems,” inProceedings of the 2011 26th IEEE/ACM International Conference

on Automated Software Engineering, ser. ASE '11, 2011, pp. 646C650.

[37] E. M. Fredericks, B. DeVries, and B. H. C. Cheng, “Towards runtime adaptation

of test cases for self-adaptive systems in the face of uncertainty,” inProceedings

of the 9th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems, ser. SEAMS '14, 2014, pp. 17C26.

[38] T. Griebe and V. Gruhn, “A model-based approach to test automation for context-

aware mobile applications,” inProceedings of the 29th Annual ACM Symposium

on Applied Computing, ser. SAC '14, 2014, pp.420-427.

52

[39] D. Amal�tano, A. R. Fasolino, P. Tramontana and N. Amatucci, “Considering

Context Events in Event-Based Testing of Mobile Applications,” inProceedings

of IEEE Sixth International Conference on Software Testing, Veri�cation and Val-

idation Workshops, ser. ICSTW' 13, 2013, pp.126-133.

[40] M. Jang, J. Kim, and Joo-Chan Sohn, “Simulation framework for testing context-

aware ubiquitous applications,” inProceedings of the 7th International Confer-

ence on Advanced Communication Technology, ser. ICACT '05, 2005, pp.1337-

1340.

[41] H. Lu, W. K. Chan, and T. H. Tse, “Testing context-aware middlewarecentric pro-

grams: A data �ow approach and an r�d-based experimentation,” inProceedings

of the 14th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, ser. SIGSOFT '06/FSE- 14, 2006, pp. 242C252.

[42] C. Yeh, S. Huang, and S. Chang, “A black-box based android GUI testing sys-

tem,” in Proceeding of the 11th annual international conference on Mobile sys-

tems, applications, and services, ser. MobiSys '13, 2013, pp. 529-530.

[43] C. Q. Adamsen, G. Mezzetti, and A. M?ller, “Systematic execution of Android

test suites in adverse conditions,” inProceedings of the 2015 International Sym-

posium on Software Testing and Analysis, ser. ISSTA '15, 2015, pp. 83-93.

[44] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic testing

of smartphone apps,” inProceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, ser. FSE '12, 2012, pp

649-660.

[45] C. S. Jensen, M. R. Prasad, and A. M?ller, “Automated testing with targeted event

sequence generation,” inProceedings of the 2013 International Symposium on

Software Testing and Analysis, ser. ISSTA '13, 2013, pp. 67-77.

[46] H. Lu, W. Chan, and T. Tse, “Testing pervasive software in the presence of con-

text inconsistency resolution services,” inProceedings of the 30th International

Conference on Software Engineering, ser. ICSE '08, 2008, pp. 61C70.

53

[47] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive random testing:

The art of test case diversity,”J. Syst. Softw., vol. 83, no. 1, pp. 60C66, Jan. 2010.

[48] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour, “Proving programs

robust,” inProceedings of the 19th ACM SIGSOFT Symposium and the 13th Eu-

ropean Conference on Foundations of Software Engineering, ser. ESEC/FSE '11,

2011, pp. 102C112.

[49] E. M. Fredericks, A. J. Ramirez, and B. H. C. Cheng, “Towards run-time testing

of dynamic adaptive systems”, inProceedings of the 8th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS

'13, 2013, pp. 169-174.

[50] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, “Context Aware Com-

puting for The Internet of Things: A Survey,” inCommunications Surveys &

Tutorials, IEEE, vol.16, no.1, 2014, pp.414-454.

[51] Y. Lee, Y. Ju, C. Min, J. Yu, J. Song, “MobiCon: Mobile context monitoring

platform: Incorporating context-awareness to smartphone-centric personal sen-

sor networks,” inProcedding of the 9th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks, ser.

SECON '12, 2012, pp.109-111.

[52] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness-guided path explo-

ration in dynamic symbolic execution,” in Dependable Systems Networks, 2009.

DSN '09. IEEE/IFIP International Conference on, June 2009, pp. 359C368.

[53] F. Pastore and L. Mariani, “ZoomIn: discovering failures by detecting wrong

assertions,” inProceedings of the 37th International Conference on Software En-

gineering, ser. ICSE '15, 2015, pp.66-76.

[54] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and oracles,” in

Proceedings of the 19th international symposium on Software testing and analy-

sis, ser. ISSTA '10, 2010, pp.147-158.

[55] “Monkey”, http://developer.android.com/guide/developing/tools/ monkey.html.

54

