
IDEA: Improving Dependability for Self-Adaptive
Applications

Wenhua Yang, Chang Xu
∗

, Linghao Zhang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China
Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, China

ihope1024@gmail.com, changxu@nju.edu.cn, zlh.nju@gmail.com

ABSTRACT
Self-adaptive applications are becoming popular since they
are able to adapt their behavior based on changes of environ-
ments. However, possible faults in these applications may
result in runtime failures, which reduce their dependabili-
ty. We propose a novel approach to improving the depend-
ability of self-adaptive applications. The approach uses a
rematching process to make self-adaptive applications con-
sistent with their environments. In the rematching process,
consistency failures are automatically detected and fixed at
runtime to reduce application failures. The strategy for fix-
ing consistency failures includes backward rematching and
forward rematching. Proper strategies can be selected ac-
cording to rematching ability analysis results for concerned
applications. As a result, applications can thus achieve con-
sistency with their environments and failures can be signif-
icantly avoided. We developed a tool named IDEA to sup-
port this process and the experimental results confirmed the
effectiveness of our IDEA.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Self-adaptive Application, Failure, Rematching

1. INTRODUCTION
Self-adaptive applications modify their own behavior in

response to changes in their environments. They use sen-
sors and actuators, which could be imprecise and imperfect,
to interact with the complex and dynamic physical world.

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware 2013 Doctoral Symposium, December 10, 2013, Beijing, China
Copyright 2013 ACM 978-1-4503-2548-6/13/12 ...$15.00.

Meanwhile, faults often exist in applications. As a result,
such applications may be subject to runtime failures. In
this paper, we focus on model-based self-adaptive applica-
tions which are being widely-used.

Model-based self-adaptive applications are typically con-
structed using states and transition rules. For each state
in such an application, it is associated with some transi-
tion rules. These transition rules describe the conditions,
which should be satisfied when the rules are triggered, and
actions that will thus be executed. Each state specifies its
own understanding to environment, which means that each
state and its transition rules are designed to deal with d-
ifferent environmental attribute values. The understanding
to environment is called assumption on environment, which
is specified as an invariant. Traditional model checking or
testing approaches [13, 14, 17, 20] can be used to guarantee
the correctness of transition rules at one state. However,
the correctness of transition rules between states is hard to
guarantee. Much work pays attention to the detection of
errors at model level, which includes non-determinism [13,
24, 20, 17], stability [17, 13, 20], reachability and liveness
[17, 20], and consistency errors [12, 10, 20].

The errors at model level may result in observable applica-
tion failures with certain application semantics at runtime.
The consequences of application failures are severe, which we
should try to avoid. A consistency failure emerges when the
state’s assumption on environment is violated, which means
the state’s understanding to environment is inconsistent with
the real physical world. Our previous work [24] studied the
correlation between consistency failures and application fail-
ures, and found that there is a strong correlation between
them. Our approach can take certain adaptive actions to
account for violations of state invariants.

We developed a tool named IDEA (Improving Dependabi-
lity for Self-Adaptive Applications) to detect and fix con-
sistency failures at runtime for model-based self-adaptive
applications. The input of IDEA is an application model
specified in XML files with specific format including states,
transition rules and states’ invariants. IDEA has an execu-
tion engine to support running the applications, and an er-
ror checker checking invariants with environmental attribute
values. When consistency failures are detected, the rematch-
ing module will be triggered to rematch an application with
its environment.

The goal of this paper is to introduce our approach to
recovering model-based self-adaptive applications from con-
sistency failures, as well as the details of our IDEA imple-
mentation. We would also outline follow-up research steps

S0

S1

S5

S2

S3

S4

r1

r0

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

car

s0

s1 s2

s3

s4

s5

s0

disF >= 20 && disT < 60

disF >= 20 && disT < 60

disL >= 20

disF >= 20 && disL >= 20

disF > 20

disL >= 20

disR < 20, walkF, S0

disR >= 20, walkF & turnR, S0

disR >= 20, walkF , S1

disR < 20, Nothing , S1

disR < 20, Nothing , S5

disF >= 20, walkF , S2

disF < 20, turnL , S2

disF >= 20, walkF , S3

disF < 20, turnL , S3

disR < 20, walkF , S4

disR >= 20, walkF & turnR , S4

disR >= 20, walkF , S5
Line connected state and assumption

Line connected rule and rule number

Figure 1: An example robot car application and its scenario.

to take, especially for an extended experimentation.
The remainder of this paper is organized as follows. Sec-

tion 2 introduces model-based self-adaptive applications, con-
sistency failures and application failures using an illustrating
example. Section 3 presents the design and implementation
of tool IDEA. Section 4 discusses the experiments and future
work. Related work is given in Section 5 and a summary is
drawn in the last section.

2. SELF-ADAPTIVE APPLICATIONS
We discuss the model-based self-adaptive applications and

the challenges that they confront in the following parts.

2.1 Model-Based Applications
There are plenty of approaches to modeling self-adaptive

applications, such as Petri Net, Hybrid Automata, UML,
and FSM. Here we follow a popular A-FSM approach [17]
proposed in recent years, and extend it to fulfill our require-
ment.
A model-based self-adaptive application can be modeled

as M := (S,R, s0). S is the set of state, and R is the set
of transition rules. A transition rule r ∈ R is modeled as
r := (condition, actions, state), where condition is a logical
formula that will be checked; actions are serially executed
(if more than one action are contained) when the transition
rule is triggered; and state is the owner of the transition rule.
State s0 ∈ S is the initial state, from which the model-based
self-adaptive application starts. For each state s ∈ S, s is
associated with a part of rules Rs ∈ R.
An adaptation can be described as follows. Firstly, new

environmental attribute values are obtained. Secondly, the
transition rules associated with the current state are checked
for their conditions. If a condition is satisfied, the corre-
sponding transition rule is triggered. Nevertheless, more
than one transition rule’s condition may be satisfied at one
time. For such a case, priority or resolution mechanism [17,
21, 22] can be applied to select one transition rule. Third-
ly, the triggered transition rule’s actions are taken. Here,
the current state may transit to another state in accordance
with the actions. Continuous adaptations form a model-
based self-adaptive application’s execution process.
We take a robot car model-based self-adaptive application

as an illustrative example to introduce the way of modeling
model-based self-adaptive applications. The application is
designed for controlling a robot car to automatically explore
unknown area by using ultrasonic sensors without bumping

into any obstacles. Figure 1 (left) illustrates a robot car
application designed for controlling a robot car. Figure 1
(right) illustrates one scenario in which the application con-
trols the car to explore the area when it walks along a wall.

As discussed before, M := (S,R, s0), where S := S0, . . . , S5

(6 states), R := r0, . . . , r11 (13 transition rules), and the ini-
tial state s0 is S0. At the very beginning, the car is in state
S0, which is safe, i.e., no obstacle is nearby or the car walks
along an obstacle (like a wall) by keeping a constant dis-
tance. We take state S0 as an example to explain the robot
car application, and two transition rules are associated with
S0. They are:

r0 := (′′disR < 20′′, walkF , S0).
r1 := (′′disR ≥ 20′′, walkF, turnR, S0).
The variables (disF , disB, disL, disR) represent distances

sensed by ultrasonic sensors in four directions (front, back,
left and right) between the car and its nearby obstacles. 20
is a safe distance, and action walkF means walking forward
by a unit of distance. Actions (turnL, turnR, turnB) repre-
sent turning the car left, right and back by 90, 90, and 180
degrees, respectively. Transition rule r0 will keep the car
walking along the right obstacle. Transition rule r1 makes
the car walk forward for a unit and then turn right if it finds
its distance to its right obstacle bigger than 20, and at the
same time, the application transits to a new state S1 from
S0. Other states and transition rules are elaborated in Fig-
ure 1 in which each simplified transition rule (actions of up-
dating states are omitted) is connected to the corresponding
rule number. This application serves as a running example
for illustrating how consistency failures occur and how they
are fixed to rematch the application with the environment
in a consistent way.

2.2 Consistency Failures
A consistency failure means that the assumption on the

environment of a state, which the application is current-
ly in, is violated. As mentioned before, a state’s assump-
tion is specified as an invariant. Given an model-based self-
adaptive applicationM := (S,R, s0), we associate each state
s ∈ S with an invariant s.invariant. The invariant is a log-
ical formula, which models the state’s assumption on the
environment. When a state’s invariant is violated, it means
that the application’s understanding to the environment is
no longer consistent with the actual environment. Then a
consistency failure occurs.

An invariant can be any constraint or condition formulat-

ed for modeling a state’s assumption on the environment.
For example, it can be a context consistency constraint [21,
23] that ensures contexts to be conflict-free for a state. It
can be a guard condition [15, 20] that serves as the precon-
dition for a state to be set as the current state, too. The
invariant associated with a state allows explicit specification
of the state’s assumption on its environment, and enables
automatic detection of consistency failures. The specifying
and detecting process is essentially independent of the re-
matching strategy.
Take the preceding mentioned robot car application for

example. At state S1, the car walks forward to find the
obstacle on its right-hand. Rule r2 keeps the car walking
forward when its right-hand area is open, and once disR is
smaller than 20, the car transits to the new state S2 ac-
cording to r3. It is assumed that the car’s front area should
be open at state S1, and the process to find the right-hand
obstacle should not take too long (the distance should be
smaller than 60). Let disT measures how far the car has
travelled since it transits from previous state to the current
state. Then this assumption can be formulated as an in-
variant of state ′′disF ≥ 20&&disT < 60′′. Other states’
invariants are elaborated in Figure 1 in which each state is
connected with the invariant by a dotted line. If this in-
variant is violated (e.g., disT > 60), the car is unlikely still
walking in an open area to find the right-hand obstacle. It
may already pass the open area and its right-hand obstacle
may be taken away, but it does not know the situation itself.
In this case, a consistency failure occurs.
The preceding example illustrates how consistency fail-

ures occur by violating invariants. Consistency failures in-
dicate that the car’s understandings of their environments
no longer match the actual environments. If consistency
failures are ignored, the car is unlikely to continue to make
correct adaptation in the future. Take our preceding con-
sistency failure for instance. The application is at S1, and
the car may keep looking for its right-hand obstacle, until it
bumps into its front obstacle by executing r2 (since it thinks
its right-hand obstacle has not been found yet).

2.3 Application Failures
Application failures are always observable and may result

in severe consequences with certain application semantics at
runtime. Design faults may lead to failures, and some faults
are hard to identify and find. However, it is easy to recognize
failures, such as crash, freezing, and stack overflow.
Application failures, which include some specific failures

with certain application semantics like safety and time re-
quirements, are more specific than failures. Consider the
robot car application. It is unacceptable for the car bump-
ing into any obstacles, which is a safety requirement. Mean-
while, turning round and round in one fixed place is un-
acceptable for the car, too. The above examples are two
application failures for the robot car application. Different
applications may have different application failures. The ap-
plication failure is the last thing we want to see, and should
be avoided as far as possible.
We studied the correlation in [24], and got interesting re-

sults that 27.7-99.2% consistency failures led to application
failures, and 51.0-95.2% application failures were accompa-
nied by consistency failures, through studying 12 differen-
t robot car model-based self-adaptive applications in both
simulated and real environment. It means that there is a

Application Model

(States, rules and

assumptions)

Error Checker

(Checks Consistency

Failures)

Execution Engine

(Executes applications

and interacts with

environment)

Rematching Module

(Rematching Strategy)

Application Files

*.xml

External Environment

IDEA
Error Report

Figure 2: Tool architecture.

strong correlation between consistency failures and applica-
tion failures.

3. IMPLEMENTATION
In this section, we will talk about the implementation

of IDEA. First, we describe the functionality, the design,
and the rematching strategy used in the rematching mod-
ule. Then we describe the implementation details.

3.1 Functionality and Design
The tool IDEA is used to support detecting and fixing

consistency failures at runtime for model-based self-adaptive
applications, so as to prevent applications falling into ap-
plication failures while in running. It also has an execution
engine to support running the model-based self-adaptive ap-
plications.

IDEA takes an application’s model specified in XML files
with specific format as input. The execution engine interact-
s with the external environment. It obtains environmental
attribute values from the environment and controls devices
(e.g., robot cars) to influence the environment in return.
And an error checker will check the assumptions’ invariants
of states with new environmental attribute values continu-
ously. Furthermore, if a consistency failure is detected, the
rematching module will be triggered to adopt necessary mea-
sures based on the rematching strategy to rematch the ap-
plication with the environment. At the same time, the con-
sistency failure will be recorded in the error report. Figure2
illustrates the architecture of our tool IDEA.

The transition rules’ conditions and states’ assumptions
in applications’ models can be expressed in first order logic.
The execution engine will check the conditions associated
with the current state to select a rule to execute. The error
checker will check the invariant of the current state before
executing transition rules. If a consistency failure is detect-
ed, the rematching module will be called.

3.2 Rematching Strategy
If a consistency failure is detected, the current state of

the concerned model-based self-adaptive application is prob-
lematic, for its associated invariant has been violated, which
means its understanding to the environment is inconsistent
with the actual environment. In order to fix this consistency
failure, it is intuitive to transit the application to another
proper state whose invariant is not violated. However, an
application’s current state cannot be changed by force ar-
bitrarily. It will cause side effects that we do not want to
see. Therefore, the application should be rematched to the
environment reasonably both logically and physically. In

Algorithm 1 Rematching strategy algorithm.

Input:
M (Model-based self-adaptive application)

Output:
rr (rematching result)

1: while (s.invariant) do
2: if (s.br > 0 and !firstState(t, s)) then
3: //Backward rematchable and not rematching the

beginning yet, t(history execution trace),s(the cur-
rent state)

4: t := cancelOne(M , t) //Cancel the last step
5: s := lastState(t) //May still be itself
6: else if (s.fr > 0) then
7: //Forward rematchable
8: find r, s′ such that connect(r, s, s′) and s′.fr ==

max{s′′.fr | connect(?, s, s′′)}
9: t := completeOne(M , t, r) //Complete a new step
10: s := s′

11: else
12: rr := false
13: break
14: end if
15: rr := true
16: end while
17: return rr

[27] and [24], we introduced the model-based self-adaptive
application’s atomic semantics of actions in the rematching
strategy to achieve the above goal. Actions’ atomicity means
that actions taken in adaption should be totally completed
or cancelled, aka “all-or-nothing” semantics in transactional
processes [18, 26].
Consider a model-based self-adaptive application’s exe-

cution trace: s0r0s1 . . . rnsn (s0, s1, . . . , sn are states, and
r0, ..., rn are rules), either the forward rematching or the
backward rematching can be brought in for sn, whose in-
variant is violated. The application can transit to its future
state sn+1 by forward rematching provided that all actions
taken in executing rule rn+1 can be guaranteed to complete,
and can transit back to its earlier state sn−1 by backward
rematching provided that all actions taken in executing rule
rn can be totally cancelled. If the application transits to
state sn+1 or sn−1, and the states’ invariants are not hold,
the application can consider transiting back to a earlier s-
tate or a future state until the state’s invariant is satisfied.
The rematching strategy algorithm is given in Algorithm3.1
to describe this process. The algorithm draws support from
the rematching ability analysis algorithm in [24]. The re-
matching ability analysis algorithm analyzes states’ forward
and backward rematching abilities (results are expressed by
s.fr and s.br). The algorithm of rematching strategy prefer-
s backward rematching (Lines 3-5) to forward rematching
(Lines 7-10) in a conservative way. Function cancelOne com-
pensates all actions in the last adaptation. Function com-
pleteOne completes all actions in the selected adaptation.

3.3 Implementation Details
Implementation details of tool IDEA are presented in this

part. IDEA (developed in JAVA) mainly consists of four
function modules (application model resolving module, exe-
cution engine, error checker and rematching module).
The execution engine is a core module in IDEA, which

<transition>

 <actions>

 <action type = "set_state" param = "s0" param2 = "s1"/>

 <action type = "disable_all" param = "" />

 <action type = "enable" param = "trtn3" />

 <action type = "enable" param = "trtn4" />

 <action type = "turnleft" param = "" />

 </actions>

</transition>

<formula>

 <let var = "p_car" in = "p_car">

 <bfunc name = "less">

 <param pos = "1" var = "p_car" field = "front_dis"/>

 <param pos = "2" var = "20" field = "" />

 </bfunc>

 </let>

</formula>

Figure 3: A snapshot of the application’s XML files.

drives the whole process. The application model resolving
module is called by the execution engine to receive and re-
solve the application files. Specific format XML files are
supported, and the format is easy to understand and use.

Figure 3 shows a snapshot of the files describing a robot
car application’s transition rule. The actions are illustrated
in the top of Figure 3, and four types of actions (update
states, disable rules, enable rules and turn left) are showed.
Figure 3 (bottom) illustrates the condition, which expresses
that the distance between the car and its front obstacles
is less 20. The input files will be checked for the format
and then we use dom4j [1] to resolve the XML files. After
the application model is understood by IDEA, the execution
engine can execute the application by interacting with the
environment.

Note that the interaction needs support from underlying
hardware platforms or other middleware to collect and man-
age the environmental attribute values (contexts). Different
model-based self-adaptive applications may involve different
hardware platforms. In Section 4, we state the experiment
plan, and then introduce both certain hardware platforms
and simulated environments about the robot car application.

The invariant of the current state is checked before execut-
ing every selected transition rule. If invariants are unsatis-
fied, consistency failures will occur and then the rematching
module will be called. At the same time, this information
is recorded in the error report. Proper rematching decision-
s will be made by the rematching module, and then the
rematching actions will be executed by the execution en-
gine according to the decisions. In order to complete the
rematching actions, the execution engine needs to interact
with the environment and guarantee the rematching actions
can be totally cancelled or complete. It also needs hardware
platforms’ support. For example, our aforementioned robot
car application’s hardware is based on Lego NXT car [2].
And the application uses backward/turning-right/turning-
left movements to totally cancel forward/turning-left/turning-
right movements. It uses a speed sensor and a digital com-
pass to guarantee forward/turning-left/turning-right move-
ments to be totally completed. To support the robot car
application, we realize a function in the execution engine to
collect and manage environmental attribute values related to
the robot car. The execution engine can support some ap-
plications (e.g., the robot car application) now, and we will
extend it to support more model-based self-adaptive appli-
cations. Other middleware could be used to achieve this aim
like CABOT [21].

Table 1: Failure rate reduction on 5 robot-car apps.
Config. App1 App2 App3 App4 App5

Ideal
16.8%

(−1.6%)
25.6%

(−15.2%)
29.2%

(−6.0%)
2.4%

(−2.0%)
28.0%

(−2.8%)

Noise
46.8%

(−9.6%)
47.2%

(−12.0%)
52.0%

(−6.4%)
20.0%

(−10.4%)
37.0%

(−5.6%)

Dynamic
64.0%

(−15.6%)
71.2%

(−30.8%)
84.4%

(−25.6%)
12.4%

(−4.0%)
64.8%

(−17.6%)

Severe
81.6%

(−7.6%)
80.8%

(−13.2%)
95.6%

(−18.0%)
55.6%

(−8.0%)
82.4%

(−11.6%)

Real
88.0%

(−38.0%)
75.0%

(−25.0%)
75.0%

(−50.0%)
100.0%

(−50.0%)
75.0%

(−50.0%)

4. EXPERIMENTS AND FUTURE WORK
We are going to conduct experiments to evaluate our ap-

proach’s performance and cost, on the robot car application
and other model-based self-adaptive applications. Detailed
experiment plan will be elaborated in this section.
The subjects of our experiments are model-based self-

adaptive applications, mainly the robot car applications here.
We have 12 different robot car applications which are inde-
pendently developed by different research staffs and students
in our university during the past three years. The total num-
ber of states and transition rules in each application varies
from 17 to 40. We prepare to compare our approach with
three other strategies: no rematching, directly jumping to
a state whose invariant holds, and rematching but ignoring
its rematching ability analysis result (arbitrary forward re-
matching or backward rematching). The goal of the last two
is to justify why we have to guarantee application semantics
atomic in rematching.
The environment of the experiments for the robot car

application can either be simulated or real. We simulated
four different scenarios by introducing noise and dynamics.
The scenarios are Ideal (scenario without noise or dynam-
ics), Noise (scenario with noise), Dynamic (scenario with
dynamics), and Severe (scenario with noise and dynamics).
The dynamics are simulated as unpredicted object move-
ments for the applications. The real environment uses real
hardware and scenario.
In total, we set five configurations for the experiment.

We are going to run these robot car applications on four
different hardware platforms including tank car, tricycle and
other two different custom-made cars. The differences of
those cars reflect in the success rate to complete actions
and hardware failure rate. For example, tank car can be
guaranteed to turn right and turn left precisely, but tricycle
may generate some relatively large offset compared to the
tank car’s result. For each configuration in the simulation,
we are ready to run each application for 250 times in every
different hardware platform. It takes 2 minutes for each
run in simulation. And for the real environment, we will
conduct 8 times of runs of each application in every different
hardware platform. And four strategies will be compared.
To sum up, 61,920 application runs will be executed.
We conducted some preliminary experiments, and Table

1 illustrates the results. They are about five applications
running in five configurations on the tricycle platform. We
compared no rematching and our approach for the applica-
tion failure rate, which is defined as the ratio of runs in which
application failures occurred against all runs. Each datum
takes the form of ′′X(Y)′′. X is the original application fail-
ure rate and Y is the change of the rate after applying our
approach. The results show that our rematching strategy is
generally effective for reducing the failure rate.
The next research steps to be taken include completing

the above experiments, and evaluating our approach in other
respects. First, we will compare the cost of our rematching
strategy with other approaches. Secondly, the scalability of
our approach is going to be evaluated. Thirdly, we will study
the influence on the rematching effects exerted by the quality
of the invariants, and whether the users could define the
invariants for the states. Furthermore, we want to extend
our tool IDEA to support more model-based self-adaptive
applications.

5. RELATED WORK
Self-adaptive applications interact with the environmen-

t frequently by sensors. But sensing technology is prone
to errors. As a result, incomplete, imprecise, or even con-
flicting sensory data may be collected by the self-adaptive
applications. It is uncertain to know whether those senso-
ry data can fulfill functionalities [8]. Ramirez et al. [16]
sorted the uncertain factors that can affect the dependabili-
ty of self-adaptive applications. Feedback-based control [5],
exception-monitored framework [9], or reflective middleware
[7] can be used to handle uncertainty in self-adaptive appli-
cations. And developers need to consider how to adequately
and properly model adaptation in self-adaptive applications.
Andersson et al. [3] discussed a set of modeling dimensions.
A research roadmap is introduced by Cheng et al. [6] for re-
lated engineering issues. Kramer and Magee [11] discussed
architectural challenges and potential solutions.

Existing work about fault detection in self-adaptive ap-
plications focuses on different levels (model level and code
level). Sama et al. [17] made use of model checking to search
applications’ state space to detect faults. Xu et al. [20] used
error patterns to track and analyze responsible faults and Li-
u et al. [13] used machine learning to derive deterministic
and likely constraints to prune false warnings and prioritize
true faults in model level. In code level, new coverage cri-
teria was imported by Lu et al. [14] to test self-adaptive
applications, and Wang et al. [19] strengthened test cases
by focusing on context switching points.

There has been much work about runtime error handling
for self-adaptive applications. [7] and [10] paid attention to
data. The first fixed sensory data errors probabilistically
with as many integrity constraints satisfied as possible, and
the latter fixed data structure errors based on specifications.
To improve application dependability, Garlan et al. [9] used
architecture-based self-repairing. Xu et al. [22] fixed con-
text errors and prevented application semantics from being
affected. Some work considers applications composed from
service components. Schuldt et al. [18] required atomicity
of transactional systems to be protected from composition
errors. Ye et al. [26] discussed the atomicity of composed
services. In our previous work [24, 27], we extended atomic-
ity to self-adaptive applications. Boos et al. [4] checked as-
sertions for self-adaptive applications, which echoes our idea
to use invariants to check whether an application’s state is
consistent with environment. Yang et al. [25] isolated an
application from environment rather than matching it with
environment.

6. SUMMARY
Self-adaptive applications may fail at runtime because their

understandings to the environments do not match the actu-
al environments. This may happen when sensors do not

work properly, or when the environment conditions change
rapidly. We propose an approach to reducing application
failures by fixing consistency failures, since there is a high
correlation between consistency and application failures. In
this approach, the application’s states whose invariant are
violated can be matched again to the actual environment by
forward or backward rematching. A tool named IDEA was
developed to realize the approach, and was evaluated on a
set of 12 model-based self-adaptive robot car applications
with different configurations. The results demonstrate that
the failure rate of such applications can be significantly re-
duced. In the future, we are going to evaluate the approach
from more aspects.

7. ACKNOWLEDGMENTS
This research was partially funded by National High-tech

R&D 863 Program (No. 2012AA011205) and National Nat-
ural Science Foundation (Nos. 61100038, 91318301, 6136112-
0097) of China. Chang Xu was also partially supported by
Program for New Century Excellent Talents in University,
China (No. NCET-10-0486).

8. REFERENCES
[1] Dom4j. http://dom4j.sourceforge.net/.

[2] Lego. http://mindstorms.lego.com/en-us/default.aspx.

[3] J. Andersson, R. Lemos, S. Malek, and D. Weyns.
Modeling dimensions of self-adaptive software systems.
In Software Engineering for Self-Adaptive Systems,
pages 27–47. Springer Berlin Heidelberg, 2009.

[4] K. Boos, C. L. Fok, C. Julien, and M. Kim. Brace: An
assertion framework for debugging cyber-physical
systems. In Proc. ICSE’ 12, pages 1341–1344, 2012.

[5] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, and et al. Engineering
self-adaptive systems through feedback loops. In
Software Engineering for Self-Adaptive Systems, pages
48–70. Springer Berlin Heidelberg, 2009.

[6] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, and J. Andersson. Software engineering for
self-adaptive systems: A research roadmap. In
Software Engineering for Self-Adaptive Systems, pages
1–26, 2009.

[7] B. Demsky and M. Rinard. Goal-directed reasoning
for specification-based data structure repair. IEEE
Trans. Softw. Eng., 32(12):931–951, 2006.

[8] N. Esfahani, E. Kouroshfar, and S. Malek. Taming
uncertainty in self-adaptive software. In Proc.
ESEC/FSE’ 11, pages 234–244, New York, USA, 2011.

[9] D. Garlan, S.-W. Cheng, and B. Schmerl. Increasing
system dependability through architecture-based
self-repair. In Architecting Dependable Systems, pages
61–89. Springer Berlin Heidelberg, 2003.

[10] N. Khoussainova, M. Balazinska, and D. Suciu.
Towards correcting input data errors probabilistically
using integrity constraints. In Proceedings of the 5th
ACM international workshop on Data engineering for
wireless and mobile access, pages 43–50, New York,
USA, 2006.

[11] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Proc. Future of Software
Engineering, ICSE’ 07, pages 259–268, 2007.

[12] D. Kulkarni and A. Tripathi. A framework for
programming robust context-aware applications. IEEE
Trans. Softw. Eng., 36(2):184–197, 2010.

[13] Y. Liu, C. Xu, and S. Cheung. Afchecker: Effective
model checking for context-aware adaptive
applications. J. Syst. Softw., 86(3):854 – 867, 2013.

[14] H. Lu, W. K. Chan, and T. H. Tse. Testing
context-aware middleware-centric programs: a data
flow approach and an rfid-based experimentation. In
Proc. FSE’ 06, pages 242–252, New York, USA, 2006.

[15] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime:
A coordination model and middleware supporting
mobility of hosts and agents. ACM Trans. Softw. Eng.
Methodol., 15(3):279–328, July 2006.

[16] A. Ramirez, A. Jensen, and B. H. C. Cheng. A
taxonomy of uncertainty for dynamically adaptive
systems. In Proc. SEAMS’ 12, pages 99–108, 2012.

[17] M. Sama, S. Elbaum, F. Raimondi, D. Rosenblum,
and Z. Wang. Context-aware adaptive applications:
Fault patterns and their automated identification.
IEEE Trans. Softw. Eng., 36(5):644–661, 2010.

[18] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek.
Atomicity and isolation for transactional processes.
ACM Trans. Database Syst., 27(1):63–116, Mar. 2002.

[19] Z. Wang, S. Elbaum, and D. Rosenblum. Automated
generation of context-aware tests. In Proc. ICSE’ 07,
pages 406–415, 2007.

[20] C. Xu, S. Cheung, X. Ma, C. Cao, and J. Lu. Adam:
Identifying defects in context-aware adaptation. J.
Syst. Softw., 85(12):2812 – 2828, 2012.

[21] C. Xu and S. C. Cheung. Inconsistency detection and
resolution for context-aware middleware support. In
Proc. Joint ESEC/FSE’ 05, pages 336–345, New York,
USA, 2005.

[22] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye. On
impact-oriented automatic resolution of pervasive
context inconsistency. In Proc. Joint ESEC/FSE’ 07,
pages 569–572, New York, USA, 2007.

[23] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye. Partial
constraint checking for context consistency in
pervasive computing. ACM Trans. Softw. Eng.
Methodol., 19(3):9:1–9:61, Feb. 2010.

[24] C. Xu, W. Yang, X. Ma, C. Cao, and J. Lu.
Environment rematching: toward dependability
improvement for self-adaptive applications. In Proc.
ASE’ 13, 2013, forthcoming.

[25] H. Yang, C. Xu, X. Ma, L. Zhang, C. Cao, and J. Lu.
Consview: Towards application-specific consistent
context views. In Proc. COMPSAC’ 12, pages
632–637, 2012.

[26] C. Ye, S. Cheung, W. Chan, and C. Xu. Atomicity
analysis of service composition across organizations.
IEEE Trans. Softw. Eng., 35(1):2–28, 2009.

[27] L. Zhang, C. Xu, X. Ma, T. Gu, X. Hong, C. Cao, and
J. Lu. Resynchronizing model-based self-adaptive
systems with environments. In Proc. APSEC’ 12,
pages 184–193, 2012.

