Bloom Filters and its Variants

Original Author: Deke Guo
Revised by Haipeng Dai

Nanjing University
2015.11.27
Outline

1. Standard Bloom Filters
2. Compressed Bloom Filters
3. Counting Bloom Filters
4. Representation of a set of (key, f(key))
5. Invertible Bloom Filters
The main point

- Whenever you have a set or list, and space is an issue, a Bloom filter may be a useful alternative.
The Problem Solved by BF: Approximate Set Membership

- Given a set $S = \{x_1, x_2, \ldots, x_n\}$, construct data structure to answer queries of the form “Is y in S?”

- Data structure should be:
 - Fast (Faster than searching through S).
 - Small (Smaller than explicit representation).

- To obtain speed and size improvements, allow some probability of error.
 - False positives: $y \notin S$ but we report $y \in S$
 - False negatives: $y \in S$ but we report $y \notin S$
1. Standard Bloom Filters

Set representation

Data set B

A hash function family

A bit vector

Add ‘a’
1. Standard Bloom Filters

Set representation

A hash function family

A bit vector

Data set B

a b

0 1 0 1 0 0 1 1 0 1

1 1 0 0 0
1. Standard Bloom Filters

Membership query

- “Constant” time (time to hash).
- Small amount of space.
- But with some probability of being wrong.
A hash function family

Data set A

A false positive

A bit vector

query
False positive probability

- **Assumption:** We have good hash functions, look random.

- Given m bits for filter and n elements, choose number k of hash functions to minimize false positives:
 - Let $p = \Pr[\text{cell is empty}] = (1 - 1/m)^{kn} \approx e^{-kn/m}$
 - Let $f = \Pr[\text{false pos}] = (1 - p)^k \approx (1 - e^{-kn/m})^k$

- As k increases, more chances to find a 0, but more 1’s in the array.

- Find optimal at $k = (\ln 2)m/n$ by calculus.

 $$f = \Pr[\text{false pos}] = 0.61285^{m/n}$$
Hash functions

False positive rate

Opt $k = 8 \ln 2 = 5.45...$

$m/n = 8$
Alternative Approach for Bloom Filters

- Folklore Bloom filter construction.
 - Recall: Given a set \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) on a universe \(U \), want to answer membership queries.
 - Method: Find an \(n \)-cell \textit{perfect hash function} for \(S \).
 - Maps set of \(n \) elements to \(n \) cells in a 1-1 manner.
 - Then keep \(\left\lceil \log_2(1/\varepsilon) \right\rceil \) bit fingerprint of item in each cell. Lookups have false positive \(\leq \varepsilon \).
 - Advantage: each bit/item reduces false positives by a factor of \(1/2 \), vs \(\ln 2 \) for a standard Bloom filter.

- Negatives:
 - Perfect hash functions non-trivial to find.
 - Cannot handle on-line insertions.
Perfect Hashing Approach

Element 1 Element 2 Element 3 Element 4 Element 5

Fingerprint(4) Fingerprint(5) Fingerprint(2) Fingerprint(1) Fingerprint(3)
Classic Uses of BF: Spell-Checking

- Once upon a time, memory was scarce...
- `/usr/dict/words` -- about 210KB, 25K words
- Use 25 KB Bloom filter
 - 8 bits per word.
 - Optimal 5 hash functions.
- Probability of false positive about 2%
- False positive = accept a misspelled word
- BF’s still used to deal with list of words
 - Password security [Spafford 1992], [Manber & Wu, 94]
 - Keyword driven ads in web search engines, etc
Classic Uses of BF: Data Bases

- **Join**: Combine two tables with a common domain into a single table.

- **Semi-join**: A join in distributed DBs in which only the joining attribute from one site is transmitted to the other site and used for selection. The selected records are sent back.

- **Bloom-join**: A semi-join where we send only a BF of the joining attribute.
Example

<table>
<thead>
<tr>
<th>Empl</th>
<th>Salary</th>
<th>Addr</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>60K</td>
<td>…</td>
<td>New York</td>
</tr>
<tr>
<td>George</td>
<td>30K</td>
<td>…</td>
<td>New York</td>
</tr>
<tr>
<td>Moe</td>
<td>25K</td>
<td>…</td>
<td>Topeka</td>
</tr>
<tr>
<td>Alice</td>
<td>70K</td>
<td>…</td>
<td>Chicago</td>
</tr>
<tr>
<td>Raul</td>
<td>30K</td>
<td></td>
<td>Chicago</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>Cost of living</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>60K</td>
</tr>
<tr>
<td>Chicago</td>
<td>55K</td>
</tr>
<tr>
<td>Topeka</td>
<td>30K</td>
</tr>
</tbody>
</table>

- Create a table of all employees that make < 40K and live in city where COL > 50K.

- **Join**: send (City, COL) for COL > 50. **Semi-join**: send just (City).

- **Bloom-join**: send a Bloom filter for all cities with COL > 50
A Modern Application: Distributed Web Caches
Web Caching

- Summary Cache: [Fan, Cao, Almeida, & Broder]
- If local caches know each other’s content...
 …try local cache before going out to Web
- Sending/updating lists of URLs too expensive.
- Solution: use Bloom filters.
- False positives
 - Local requests go unfulfilled.
 - Small cost, big potential gain
2. Compressed Bloom Filters

- Insight: Bloom filter is not just a data structure, it is also a message.
- If the Bloom filter is a message, worthwhile to compress it.
- Compressing bit vectors is easy.
 - Arithmetic coding gets close to entropy.
- Can Bloom filters be compressed?
Optimization, then Compression

- Optimize to minimize false positive.

\[p = \Pr[\text{cell is empty}] = (1 - 1/m)^{kn} \approx e^{-kn/m} \]
\[f = \Pr[\text{false pos}] = (1 - p)^k \approx (1 - e^{-kn/m})^k \]
\[k = (m \ln 2)/n \text{ is optimal} \]

- At \(k = m (\ln 2)/n \), \(p = 1/2 \).

- Bloom filter looks like a random string.
 - Can’t compress it.
Compressed Bloom Filters

- “Error optimized” Bloom filter is ½ full of 0’s, 1’s.
 - Compression would not help.
 - But this optimization for a fixed filter size m.
- Instead optimize the false positives for a fixed number of transmitted bits.
 - Filter size m can be larger, but mostly 0’s
 - Larger, sparser Bloom filter can be compressed.
 - Useful if transmission cost is bottleneck.
- Claim: transmission cost limiting factor.
 - Updates happen frequently.
 - Machine memory is cheap.
Benefits of Compressed Bloom Filters

<table>
<thead>
<tr>
<th>Array bits per elt.</th>
<th>m/n</th>
<th>8</th>
<th>14</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans. Bits per elt.</td>
<td>z/n</td>
<td>8</td>
<td>7.923</td>
<td>7.923</td>
</tr>
<tr>
<td>Hash functions</td>
<td>k</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>False positive rate</td>
<td>f</td>
<td>0.0216</td>
<td>0.0177</td>
<td>0.0108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Array bits per elt.</th>
<th>m/n</th>
<th>16</th>
<th>28</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans. Bits per elt.</td>
<td>z/n</td>
<td>16</td>
<td>15.846</td>
<td>15.829</td>
</tr>
<tr>
<td>Hash functions</td>
<td>k</td>
<td>11</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>False positive rate</td>
<td>f</td>
<td>4.59E-04</td>
<td>3.14E-04</td>
<td>2.22E-04</td>
</tr>
</tbody>
</table>

- **Examples for bounded transmission size.**
 - 20-50% of false positive rate.
Benefits of Compressed Bloom Filters

<table>
<thead>
<tr>
<th>Array bits per elt.</th>
<th>m/n</th>
<th>8</th>
<th>12.6</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans. Bits per elt.</td>
<td>z/n</td>
<td>8</td>
<td>7.582</td>
<td>6.891</td>
</tr>
<tr>
<td>Hash functions</td>
<td>k</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>False positive rate</td>
<td>f</td>
<td>0.0216</td>
<td>0.0216</td>
<td>0.0215</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Array bits per elt.</th>
<th>m/n</th>
<th>16</th>
<th>37.5</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans. Bits per elt.</td>
<td>z/n</td>
<td>16</td>
<td>14.666</td>
<td>13.815</td>
</tr>
<tr>
<td>Hash functions</td>
<td>k</td>
<td>11</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>False positive rate</td>
<td>f</td>
<td>4.59E-04</td>
<td>4.54E-04</td>
<td>4.53E-04</td>
</tr>
</tbody>
</table>

- Examples with fixed false probability rate.
 - 5-15% compression for transmission size.
Example

$z/n = 8$
Results

- At $k = m \cdot (\ln 2) / n$, false positives are maximized with a compressed Bloom filter.
 - Best case without compression is worst case with compression; compression always helps.

- Side benefit: Use fewer hash functions with compression; possible speedup.
3. Counting Bloom Filters and Deletions

- Cache contents change
 - Items both inserted and deleted.
- Insertions are easy – add bits to BF
- Can Bloom filters handle deletions?
- Use Counting Bloom Filters to track insertions/deletions at hosts; send Bloom filters.
Handling Deletions

- Bloom filters can handle insertions, but not deletions.

- If deleting x_i means resetting 1s to 0s, then deleting x_i will “delete” x_j.

```
0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0
```
Counting Bloom Filters

Start with an m bit array, filled with 0s.

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Hash each item x_j in S_k times. If $H_j(x_j) = a$, add 1 to $B[a]$.

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0</td>
</tr>
</tbody>
</table>

To delete x_j decrement the corresponding counters.

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0</td>
</tr>
</tbody>
</table>

Can obtain a corresponding Bloom filter by reducing to 0/1.

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0</td>
</tr>
</tbody>
</table>
Counting Bloom Filters: Overflow

- Must choose counters large enough to avoid overflow.
- Poisson approximation suggests 4 bits/counter.
 - Average load using \(k = (\ln 2)m/n \) counters is \(\ln 2 \).
 - Probability a counter has load at least 16:

- Failsafes possible.

\[
\approx e^{-\ln 2} (\ln 2)^{16} / 16! \approx 6.78E-17
\]
Bloom Filters: Other Applications?

- P2P Keyword Search
- P2P Collaboration
- Resource Location
- Loop detection
- Scalable Multicast Forwarding
P2P Keyword Search

- Efficient P2P keyword searching [Reynolds & Vadhat, 2002].
 - Distributed inverted word index, on top of an overlay network. Multi-word queries.
 - Peer A holds list of document IDs containing Word1, Peer B holds list for Word2.
 - Need intersection, with low communication.
 - A sends B a Bloom filter of document list.
 - B returns possible intersections to A.
 - A checks and returns to user; no false positives in end result.
- Equivalent to Bloom-join
P2P Collaboration

- Informed Content Delivery
 - Delivery of large, encoded content.
 - Redundant encoding.
 - Need a sufficiently large (but not all) number of distinct packets.
 - Peers A and B have lists of encoded packets.
 - Can B send A useful packets?
 - A sends B a Bloom filter; B checks what packets may be useful.
 - False positives: not all useful packets sent
 - Method can be combined with
 - Min-wise sampling (determine a-priori which peers are sufficiently different)
Resource Location

Queries sent to root.

Each node keeps a list of resources reachable through it, through children.

List = Bloom filter.
Resource Location: Examples

- Secure Discovery Service
 - [Czerwinski, Zhao, Hodes, Joseph, Katz 99]
 - Tree of resources.

- OceanStore distributed file storage
 - [Kubiatowicz & al., 2000], [Rhea & Kubiatowicz, 2002]
 - Attenuated BFs – go d levels down in the tree

- Geographical region summary service
 - [Hsiao 2001]
 - Divide square regions recursively into smaller sub squares.
 - Keep and update Bloom filters for each level in hierarchy.
Loop detection

- Idea: Carry small BF in the packet header
- Whenever passing a node, the node mask is OR-ed into the BF
- If BF does not change there might be a loop
Scalable Multicast Forwarding

- Usual arrangement for multicast trees: for each source address keep list of interfaces where the packet should go
 - For many simultaneous multicasts, substantial storage required

- Alternative idea: trade computation for space:
 - For each interface keep BF of addresses
 - Packets checked against the BF. Check can be parallelized
 - False positives lead to (few) spurious transmissions
4. Representation of a set of \((key, f(key))\)

- **Hash-Based Approximate Counting**
 - Multiset problem: \((Key, frequency)\)
 - Space-code Bloom filters (INFOCOM 2004)
 - Spectral Bloom filters (SIGMOD 2003)

- **Bloomier Filter**
 - \((key, f(key))\)

- **Approximate Concurrent State Machines**
 - \((Key, state)\)
 - Beyond Bloom Filters: Approximate Concurrent State Machines (SIGCOMM 2006)
 - Fast Statistical Spam Filter by Approximate Classifications (Sigmetric 2006)
Hash-Based Approximate Counting

- Use min-counter associated with flow as approximation.
 - Yields approximation for all flows simultaneously.
 - Gives lower bound, and good approx.
 - Can prove rigorous bounds on performance.

- This hash-based approximate counting structure has many uses.
 - Any place you want to keep approximate counts for a data stream.
 - Databases, search engines, network flows, etc.
Use Counting Bloom filter to track bytes per flow. Potentially heavy flows are recorded.

The flow associated with y can only have been responsible for 3 packets.
Example

The flow associated with \(y \) can only have been responsible for 3 packets; counters should be updated to 5.
Bloomier Filter

- Bloom filters handle set membership.
- Counters to handle multi-set/count tracking.
- Bloomier filter:
 - Extend to handle *approximate static functions*.
 - Each element of set has associated function value.
 - Non-set elements should return null.
 - Want to always return correct function value for set elements.
Approximate Concurrent State Machines

Motivation: Router State Problem

- Suppose each flow has a state to be tracked.
 - Applications:
 - Intrusion detection
 - Quality of service
 - Distinguishing P2P traffic
 - Video congestion control
 - Potentially, lots of others!

- Want to track state for each flow.
 - But compactly; routers have small space.
 - Flow IDs can be ~100 bits. Can’t keep a big lookup table for hundreds of thousands or millions of flows!
Approximate Concurrent State Machines

- Model for ACSMs
 - We have underlying state machine, states 1…X.
 - Lots of concurrent flows.
 - Want to track state per flow.
 - Dynamic: Need to insert new flows and delete terminating flows.
 - *Can allow some errors.*
 - Space, hardware-level simplicity are key.
ACSM Basics

Operations
- Insert new flow, state
- Modify flow state
- Delete a flow
- Lookup flow state

Errors
- False positive: return state for non-extant flow
- False negative: no state for an extant flow
- False return: return wrong state for an extant flow
- **Don’t know:** return don’t know
 - Don’t know may be better than other types of errors for many applications, e.g., slow path vs. fast path.
ACSM via Counting Bloom Filters

- Dynamically track a set of current (FlowID,FlowState) pairs using a CBF.

- Consider first when system is well-behaved.
 - Insertion easy.
 - Lookups, deletions, modifications are easy when current state is given.
 - If not, have to search over all possible states. Slow, and can lead to don’t knows for lookups, other errors for deletions.
Direct Bloom Filter (DBF) Example

(123456,3) → (123456,5)

0 0 1 0 2 3 0 0 2 1 0 1 1 2 0 0

0 0 0 0 1 3 0 0 3 1 1 1 1 2 0 0
Stateful Bloom Filters

- Each flow hashed to \(k \) cells, like a Bloom filter.
- Each cell stores a state.
- If two flows collide at a cell, cell takes on don’t know value.
- On lookup, as long as one cell has a state value, and there are not contradicting state values, return state.
- Deletions handled by timing mechanism (or counters in well-behaved systems).
- Similar in spirit to [KM], Bloom filter summaries for multiple choice hash tables.
Fingerprint-compressed Filter Approach

- Store a fingerprint of flow + state in a d-left hashtable

![Diagram of fingerprint-compressed filter approach]
Fingerprint-compressed Filter Approach

- Insert - hash the element, and find the corresponding bucket in each hash table, insert the fingerprint + state in the bucket with least number of elements
- Lookup – retrieve the state of the fingerprint
- Delete – remove the fingerprint
- Update – direct update or remove old + add new
- Timing-based deletion can still be applied
Stateful Bloom Filter (SBF) Example

```
1 4 3 4 3 3 0 0 2 1 0 1 4 ? 0 2
```

(123456,3) → (123456,5)

```
1 4 5 4 5 3 0 0 2 1 0 1 4 ? 0 2
```
5. Invertible Bloom Filters

What’s the Difference?
Efficient Set Reconciliation without Prior Context
Motivation

- Distributed applications often need to compare remote state.

Must solve the Set-Difference Problem!
What is the Set-Difference problem?

- What objects are unique to host 1?
- What objects are unique to host 2?
Example 1: Data Synchronization

- Identify missing data blocks
- Transfer blocks to synchronize sets
Example 2: Data De-duplication

- Identify all unique blocks.
- Replace duplicate data with pointers
Set-Difference Solutions

- Trade a sorted list of objects.
 - O(n) communication, O(n log n) computation

- Approximate Solutions:
 - Approximate Reconciliation Tree (Byers)
 - O(n) communication, O(n log n) computation

- Polynomial Encodings (Minsky & Trachtenberg)
 - Let “d” be the size of the difference
 - O(d) communication, \(O(dn+d^3)\) computation

- Invertible Bloom Filter
 - O(d) communication, O(n+d) computation
Difference Digests

- Efficiently solves the set-difference problem.
- Consists of two data structures:
 - Invertible Bloom Filter (IBF)
 - Efficiently computes the set difference.
 - Needs the size of the difference
 - Strata Estimator
 - Approximates the size of the set difference.
 - Uses IBF’s as a building block.
Invertible Bloom Filters (IBF)

- Encode local object identifiers into an IBF.

Host 1

Host 2

- Encode local object identifiers into an IBF.
IBF Data Structure

- Array of IBF cells
 - For a set difference of size, d, require αd cells ($\alpha > 1$)
- Each ID is assigned to many IBF cells
- Each IBF cell contains:

<table>
<thead>
<tr>
<th>idSum</th>
<th>XOR of all ID’s in the cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>hashSum</td>
<td>XOR of hash(ID) for all ID’s in the cell</td>
</tr>
<tr>
<td>count</td>
<td>Number of ID’s assign to the cell</td>
</tr>
</tbody>
</table>

IBF Encode

IBF:

- idSum ⊕ A
- hashSum ⊕ H(A)
- count++

Assign ID to many cells

All hosts use the same hash functions

“Add” ID to cell

Not O(n), like Bloom Filters!
Invertible Bloom Filters (IBF)

- Trade IBF’s with remote host

Host 1

IBF 1

A B E F

Host 2

IBF 2

A C D F
Invertible Bloom Filters (IBF)

- “Subtract” IBF structures
 - Produces a new IBF containing only unique objects
$B_2 = \langle W,Y,Z \rangle$
Timeout for Intuition

- After subtraction, all elements common to both sets have disappeared. Why?
 - Any common element (e.g., W) is assigned to the same cells on both hosts (assume the same hash functions on both sides).
 - On subtraction, $W \ XOR \ W = 0$. Thus, W vanishes.

- While elements in set difference remain, they may be randomly mixed \rightarrow need a decode procedure.
Invertible Bloom Filters (IBF)

- Decode resulting IBF
 - Recover object identifiers from IBF structure.
IBF Decode

Step 1: Initial Scan

<table>
<thead>
<tr>
<th>Index</th>
<th>idSum</th>
<th>hashSum</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>V ⊕ X</td>
<td>H(V) ⊕ H(X)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>V ⊕ X ⊕ Z</td>
<td>H(V) ⊕ H(X) ⊕ H(Z)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>H(V)</td>
<td>1</td>
</tr>
</tbody>
</table>

Test for Purity:

\[H(\text{idSum}) = \text{hashSum} \]

\[H(V) = H(V) \]

Pure: \{3, 4\}

\[D_{A-B}: \{ \} \]

\[D_{B-A}: \{ \} \]
IBF Decode

Step 2: Record

<table>
<thead>
<tr>
<th>Index</th>
<th>idSum:</th>
<th>hashSum:</th>
<th>count:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>V ⊕ X</td>
<td>H(V) ⊕ H(X)</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>V ⊕ X ⊕ Z</td>
<td>H(V) ⊕ H(X) ⊕ H(Z)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>X ⊕ Z</td>
<td>H(X) ⊕ H(Z)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>H(V)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Z</td>
<td>H(Z)</td>
<td>-1</td>
</tr>
</tbody>
</table>

V

X

Z

Pure: {3, 4}

D_{A-B}: {V}

D_{B-A}: {}
IBF Decode

Step 3: Remove

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>idSum:</td>
<td>X</td>
<td>X ⊕ Z</td>
<td>X ⊕ Z</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>hashSum:</td>
<td>H(X)</td>
<td>H(X) ⊕ H(Z)</td>
<td>H(X) ⊕ H(Z)</td>
<td>0</td>
<td>H(Z)</td>
</tr>
<tr>
<td>count:</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Pure: {4}
D_{A-B}: \{V\}
D_{B-A}: \{\}

IBF Decode

Step 4: Update Pure List

<table>
<thead>
<tr>
<th>Index</th>
<th>idSum:</th>
<th>hashSum:</th>
<th>count:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>H(X)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>X ⊕ Z</td>
<td>H(X) ⊕ H(Z)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>X ⊕ Z</td>
<td>H(X) ⊕ H(Z)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Z</td>
<td>H(Z)</td>
<td>-1</td>
</tr>
</tbody>
</table>

Pure: {4, 0}
D_{A-B}: {V}
D_{B-A}: {}
How many IBF cells?

Overhead to decode at >99%

- Small Diffs: 1.4x – 2.3x
- Large Differences: 1.25x - 1.4x

<table>
<thead>
<tr>
<th>Set Difference</th>
<th>Hash Cnt 3</th>
<th>Hash Cnt 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3 Hash Cnt</td>
<td>Hash Cnt 4</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How many hash functions?

- 1 hash function produces many pure cells initially but nothing to undo when an element is removed.
How many hash functions?

- 1 hash function produces many pure cells initially but nothing to undo when an element is removed.
- Many (say 10) hash functions: too many collisions.
How many hash functions?

- 1 hash function produces many pure cells initially but nothing to undo when an element is removed.
- Many (say 10) hash functions: too many collisions.
- We find by experiment that 3 or 4 hash functions works well. Is there some theoretical reason?
Theory

- Let $d =$ difference size, $k =$ # hash functions.
- **Theorem 1:** With $(k + 1) d$ cells, failure probability falls exponentially.
 - For $k = 3$, implies a 4x tax on storage, a bit weak.
- [Goodrich,Mitzenmacher]: Failure is equivalent to finding a 2-core (loop) in a random hypergraph
- **Theorem 2:** With $c_k d$, cells, failure probability falls exponentially
 - $c_4 = 1.3x$ tax, agrees with experiments
How many IBF cells?

Overhead to decode at >99%

Large Differences: 1.25x - 1.4x
Connection to Coding

- **Mystery**: IBF decode similar to peeling procedure used to decode Tornado codes. Why?
- **Explanation**: Set Difference is equivalent to coding with insert-delete channels
- **Intuition**: Given a code for set A, send **codewords only** to B. Think of B’s set as a corrupted form of A’s.
- **Reduction**: If code can correct D insertions/deletions, then B can recover A and the set difference.

Reed Solomon --- Polynomial Methods
LDPC (Tornado) --- Difference Digest
Difference Digests

- Consists of two data structures:
 - Invertible Bloom Filter (IBF)
 - Efficiently computes the set difference.
 - Needs the size of the difference
 - Strata Estimator
 - Approximates the size of the set difference.
 - Uses IBF’s as a building block.
Strata Estimator

- Divide keys into partitions of containing $\sim 1/2^k$
- Encode each partition into an IBF of **fixed size**
 - $\log(n)$ IBF’s of ~ 80 cells each
Strata Estimator

- Attempt to subtract & decode IBF’s at each level.
- If level k decodes, then return: $2^k \times$ (the number of ID’s recovered)
Strata Estimator

- Attempt to subtract & decode IBF’s at each level.
- If level k decodes, then return: $2^k \times$ (the number of ID’s recovered)

What about the other strata?
Strata Estimator

- Observation: Extra partitions hold useful data
- Sum elements from all decoded strata & return: $2^{(k-1)} \times$ (the number of ID’s recovered)
Estimation Accuracy

Average Estimation Error (15.3 KBytes)

- Strata good for small differences.
- Min-Wise good for large differences.
Hybrid Estimator

• Combine Strata and Min-Wise Estimators.
 – Use IBF Stratas for small differences.
 – Use Min-Wise for large differences.
Hybrid Estimator Accuracy

Average Estimation Error (15.3 KBytes)

Hybrid matches Strata for small differences.

Converges with Min-wise for large differences.
Promising Applications:
- File Synchronization
- P2P file sharing
- Failure Recovery
Difference Digests Summary

- **Strata & Hybrid Estimators**
 - Estimate the size of the Set Difference.
 - For 100K sets, 15KB estimator has <15% error
 - $O(\log n)$ communication, $O(\log n)$ computation.

- **Invertible Bloom Filter**
 - Identifies all ID’s in the Set Difference.
 - 16 to 28 Bytes per ID in Set Difference.
 - $O(d)$ communication, $O(n+d)$ computation.

- **Implemented in KeyDiff Service**
Conclusions: Got Diffs?

- New randomized algorithm (difference digests) for set difference or insertion/deletion coding
- Could it be useful for your system? Need:
 - Large but roughly equal size sets
 - Small set differences (less than 10% of set size)
Comparison to Logs

- IBF work with no prior context.
- Logs work with prior context, BUT
 - Redundant information when syncing with multiple parties.

IBF’s may out-perform logs when:
- Synchronizing multiple parties
- Synchronizations happen infrequently
The main point revised again

- Whenever you have a set or list or function or concurrent state machine or whatever-will-be-next?, and space is an issue, an approximate representation, like a Bloom filter may be a useful alternative.

- Just be sure to consider the effects of the false positives!
Extension: Distance-Sensitive Bloom Filters

- Instead of answering questions of the form
 \[I_s \ y \in S. \]
 we would like to answer questions of the form
 \[I_s \ y \approx x \in S. \]
- That is, is the query close to some element of the set, under some metric and some notion of close.
- Applications:
 - DNA matching
 - Virus/worm matching
 - Databases
- Some initial results [KirschMitzenmacher].
Variation: Simpler Hashing

- [DillingerManolios],[KirschMitzenmacher]
- Let h_1 and h_2 be hash functions.
- For $i = 0, 1, 2, \ldots, k - 1$ and some f, let
 \[g_i(x) = h_1(x) + ih_2(x) \mod m \]
 So 2 hash functions can mimic k hash functions.
- Hash functions:
 - SDBM, BUZ
- Fast generation of very high quality pseudorandom numbers
 - Mersenne twister