6.1 The Turing Machine

Definition A *deterministic Turing machine* (DTM) M is specified by a sextuple $(Q, \Sigma, \Gamma, \delta, s, f)$, where

- Q is a finite set of *states*;
- Σ is an alphabet of *input* symbols;
- Γ is an alphabet of *tape* symbols, where $(\Sigma \cup \{B\}) \subseteq \Gamma$;
- δ is a *transition function* $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, \lambda\}$, where L, R, and λ denote move left, move right, and do not move, respectively;
- s in Q is a *start state*; and
- f in Q is a *final state*.
A DTM is initialized by

1. resetting the read-write head over the first cell of the tape;
2. letting the state of the DTM be s;
3. placing an input word x over Σ into the first $|x|$ cells, one symbol to a cell; and
4. assuming B is in all other cells.
We capture all information about the DTM’s current situation with the notion of a *configuration*, as we did with FAs. A configuration is a word in $\Gamma^* Q \Gamma^*$, which denotes the current state, the position of the read-write head, and also the currently written portion of the tape. In a configuration $g_1 pg_2$, the read-write head is assumed to be over the first symbol of g_2 if $g_2 \neq \lambda$ and over a blank cell otherwise. Strictly speaking, g_2 is either λ or a word in $\Gamma^*(\Gamma - \{B\})$; there are no trailing blanks. If Γ and Q have elements in common, it is possible to have configuration that contain more than one state. Such a configuration does not identify a unique situation in the DTM, so we forbid this by assuming $\Gamma \cap Q = \emptyset$, throughout.
In any configuration g_1pg_2, M proceeds in one of three ways:

1. If $p = f$, then M halts and, by definition, no move is possible. This is the reason we only require one final state.

2. If $g_2 = \lambda$, then the read-write head is over a blank cell. In this case, if $\delta(p, B) = (q, X, D)$, then M enters state q, rewriting the blank cell with X and moving one cell to the left or right or remaining where it is, depending on D.

3. If $g_2 = ag_3$, where a is in Γ, g_3 is in Γ^*, and $\delta(p, a) = (q, X, D)$, then a is rewritten as X, M enters state q, and the read-write head moves according to D.

4. In (2) and (3) if $\delta(p, B)$ or $\delta(p, a)$ is undefined, then M hands, that is, no move is possible.
Definition Let \(M = (Q, \Sigma, \Gamma, \delta, s, f) \) be a DTM. Then for two configurations \(gph \) and \(g'p'h' \) we write \(gph \vdash g'p'h' \) if

1. either \(h = Ah_1 \), for some \(A \) in \(\Gamma \) and \(h_1 \) in \(\Gamma^* \), or \(h = \lambda \) and by convention \(A = B \) and \(h_1 = \lambda \);
2. \(\delta(p, A) \) is defined, and \(p \neq f \);
3. \(\delta(p, A) = (p', B, D) \) and one of the following holds
 (a) \(D = L \), then \(g = g'C \) for some \(C \) in \(\Gamma \), and \(h' = CBh_1 \);
 (b) \(D = \lambda \), then \(g' = g \) and \(h' = Bh_1 \);
 (c) \(D = R \), than \(g' = gB \) and \(h' = h_1 \).
Notice that condition (3)(a) implies that \(g \neq \lambda \), since a move left is impossible in this case; in other words, \(M \) hangs once more.

We also write \(gph \vdash^i g'p'h' \), for some \(i > 0 \), if either \(i = 1 \) and \(gph \vdash g'p'h' \) or \(i > 1 \), \(gph \vdash g''p''h'' \). Form some \(g''h'' \) in \(\Gamma^* \) and \(p'' \) in \(Q \), and \(g''p''h'' \vdash^{i-1} g'p'h' \).

We write \(gph \vdash^+ g'p'h' \) if \(gph \vdash^i g'p'h' \) for some \(i > 0 \) and we write \(gph \vdash^* g'p'h' \) if either \(gph = g'p'h' \) or \(gph \vdash^+ g'p'h' \).
In an FA the finiteness of the input together with the absence of rewriting ensures that the reading head will eventually fall of the tape to the right. However, it is possible that a DTM may neither hang nor halt.

Definition Let $M = (Q, \Sigma, \Gamma, \delta, s, f)$ be a DTM. A word x in Σ^* is *accepted* by M if M terminates in a configuration gfh, when given x as input, that is,

$$sx \vdash^* gfh$$

The corresponding configuration sequence is called an *accepting configuration sequence*. Otherwise, either x causes M to hang or M never terminates.
We say two DTMs, M_1 and M_2, are equivalent if $L(M_1) = L(M_2)$. The family of languages specified by all DTMs is denoted by L_{DTM} and defined by

$$L_{DTM} = \{L : L = L(M) \text{ for some DTM } M\}.$$

A language in L_{DTM} is said to be a deterministic Turing machine language or a DTML.
Since DTMs were introduced as a general model for computation it is worthwhile seeing how we might program them to carry out some basic operations, rather than using them only as language recognizers.

Definition Let $M = (Q, \Sigma, \Gamma, \delta, s, f)$ be a DTM. Then M computes the function $f_M : \Sigma^* \rightarrow (\Gamma - \{B\})^*$ that is defined by

- For all x in Σ^*,

 $$f_M(x) = y \text{ in } (\Gamma - \{B\})^* \text{ iff } sx \vdash^* y_1fy_2, \text{ where } y = y_1y_2$$
Definition Let y and n be tape symbols representing yes and no. Then a DTM $M = (Q, \Sigma, \Gamma, \delta, s, f)$ is said to be a decision-making Turing machine if y and n are in Γ and not in Σ, and

- For all x in Σ^*, either $sx \vdash^* fy$ or $sx \vdash^* fn$ in M.

The yes language of M, denoted by $Y(M)$, is defined as

$$Y(M) = \{ x : x \text{ is in } \Sigma^* \text{ and } sx \vdash^* fy \}$$

and the no language of M, denoted by $N(M)$, is defined as

$$N(M) = \{ x : x \text{ is in } \Sigma^* \text{ and } sx \vdash^* fn \}$$
Such a DTM is a decision maker since for each word in Σ^* it always halts and gives either a yes or a no answer. Note that $L(M) = Y(M) \cup N(M) = \Sigma^*$ and $Y(M) \cap N(M) = \emptyset$.

Definition Given an alphabet Σ and a language $L \subseteq \Sigma^*$ we say that L is *decidable* if there is a decision-making Turing machine $M = (Q, \Sigma, \Gamma, \delta, s, f)$ with $Y(M) = L$.

The languages that are decidable by decision-making Turing machines form an important family – the family of recursive languages. This is denoted by L_{REC} and is defined by

$$L_{REC} = \{Y(M) : M \text{ is a decision-making Turing machine}\}$$
6.2 Turing Machine Programming