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ABSTRACT
Matrix factorization (MF) has become the most popular
technique for recommender systems due to its promising
performance. Recently, distributed (parallel) MF models
have received much attention from researchers of big da-
ta community. In this paper, we propose a novel model,
called distributed stochastic alternating direction methods
of multipliers (DS-ADMM), for large-scale MF problems.
DS-ADMM is a distributed stochastic variant of ADMM. In
particular, we first devise a new data split strategy to make
the distributed MF problem fit for the ADMM framework.
Then, a stochastic ADMM scheme is designed for learning.
Finally, we implement DS-ADMM based on message passing
interface (MPI), which can run on clusters with multiple ma-
chines (nodes). Experiments on several data sets from rec-
ommendation applications show that our DS-ADMM model
can outperform other state-of-the-art distributed MF mod-
els in terms of both efficiency and accuracy.

Keywords
Matrix Factorization, Recommender Systems, ADMM, Dis-
tributed Computing, Stochastic Learning

1. INTRODUCTION
Recommender systems try to recommend products (item-

s) to customers (users) by utilizing the customers’ historic
preferences. Matrix factorization (MF) [8] and its exten-
sions [9, 22, 16, 14, 10, 18] have become the most popular
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models for recommender systems due to their promising per-
formance [8]. In this big data era, more and more large-scale
data sets have emerged in many real-world recommender
systems. Hence, parallel or distributed1 MF models with
the potential of high scalability have recently captured much
attention from researchers.

The basic idea of MF is to use the multiplication of two
latent matrices, the user matrix and the item matrix, to ap-
proximate the original rating matrix. Least square method
is usually used to find a solution. In recent years, several
parallel models have been proposed for MF. These existing
models can be roughly divided into two main categories: al-
ternating least square (ALS) [23] based models and stochas-
tic gradient descent (SGD) based models.

ALS [23] adopts the alternating learning strategy to up-
date one matrix with the other one fixed. With one of the
matrices fixed, the optimization problem of MF can be re-
duced to a least square problem on the other matrix, which
can be further decomposed into several independent least
square problems on the latent feature vector of each user or
item. Hence, it is easy to design parallel strategies for ALS,
which has been implemented in [23]. However, the time
complexity for each iteration in ALS is cubic in k, where
k is the number of latent features for each user or item.
The cyclic coordinate descent (CCD) method [13] adopt-
s coordinate descent strategy to improve the ALS method
by decreasing the time complexity for each iteration to be
linear in k. The CCD++ [21] further improves the efficien-
cy of CCD by using similar coordinate descent strategy but
different updating sequence of the variables. Because both
CCD and CCD++ are based on ALS, they can also be easily
parallelized [21].

1In existing literatures, distributed models refer to those im-
plemented on clusters with multiple machines (nodes), while
parallel models refer to those implemented either on multi-
core systems with a single node or on clusters. We will also
follow this tradition in this paper. The specific meaning of
parallel can be determined from the context in the paper.



Due to its efficiency and ease of implementation, SGD has
become one of the most popular optimization strategies for
MF in recommender systems [8]. The basic idea of SGD is to
randomly select one rating each time from the rating matrix
and then use the gradient based on this selected rating to
update the latent features. It is easy to see that SGD is
essentially a sequential method, which makes it difficult to
be parallelized.

The main reason that SGD can not be directly parallelized
is that two randomly selected ratings may share the same la-
tent features corresponding to the same user or item. Hence,
there exist conflicts between two processes or nodes which
simultaneously update the same latent features. Recently,
several strategies have been proposed to parallelize SGD for
MF. The Hogwild! [11] model just ignores the conflicts by
assuming that the probability of conflict is small when two
ratings are randomly selected from a sparse rating matrix.
However, the conflicts do exist in the learning procedure,
which makes Hogwild! not effective enough [21, 24]. More-
over, Hogwild! requires all the processes share the whole
training set which is hard to be satisfied in distributed sys-
tems. Hence, Hogwild! cannot be directly used in distribut-
ed systems.

Distributed SGD (DSGD) [4] utilizes the property that
there exist several sub-blocks without overlapping rows and
columns in the rating matrix. These sub-blocks are mutually
independent of each other, thus can be processed in parallel
by different processes or nodes at the same time. Exper-
iments in [21, 24] have shown that DSGD can outperform
Hogwild! in terms of both efficiency and accuracy. However,
after a set of independent sub-blocks have been processed,
the updated variables from all processes or nodes should be
synchronized before processing the other sets of independent
sub-blocks. It is these frequent synchronization operations
that make DSGD inefficient because the slowest node will
become the bottleneck of the whole system. Things go even
worse if data skew exists, which is not rare in real applica-
tions. Very recently, fast parallel SGD (FPSGD) [24] tries to
solve the issues in DSGD by changing the scheduler into an
asynchronous one, which has achieved better performance
than DSGD. However, FPSGD can only be used in shared-
memory systems with a single node. Hence, FPSGD is still
not scalable to handle large-scale problems.

In this paper, a novel model, called distributed stochastic
alternating direction methods of multipliers (DS-ADMM),
is proposed for large-scale MF problems. DS-ADMM is a
distributed stochastic variant of ADMM [3]. The main con-
tributions of DS-ADMM are briefly outlined as follows:

• In DS-ADMM, a new data split (partition) strategy
called LocalMFSplit is proposed to assign subsets of
the whole set of ratings to different nodes in a cluster
and consequently divide the large-scale problem into
several sub-problems. Our split strategy can make the
distributed MF problem fit for the ADMM framework.
Furthermore, compared with existing split strategies in
DSGD and CCD++, our split strategy can reduce syn-
chronization and scheduling cost to improve efficiency.

• A stochastic ADMM method is designed to perform
efficient learning for parameters.

• DS-ADMM is implemented with message passing in-
terface (MPI), which can run on clusters with multi-

ple machines (nodes). Hence, DS-ADMM is scalable
to handle large-scale data sets.

• Experiments on several data sets from recommenda-
tion applications show that not only can DS-ADMM
outperform other SGD-based models, but it can also
outperform ALS-based models like CCD++ in terms
of both efficiency and accuracy.

2. BACKGROUND
In this section, we introduce the background of this pa-

per, including notations, MF formulation, ALS-based mod-
els, SGD-based models and ADMM.

2.1 Notations
We use boldface uppercase letters like M to denote matri-

ces and boldface lowercase letters like m to denote vectors.
Mi∗ and M∗j denote the ith row and the jth column of M,
respectively. Mij denotes the element at the ith row and
jth column in M. MT denotes the transpose of M, and
M−1 denotes the inverse of M. tr(·) denotes the trace of a
matrix. Ik is an identity matrix of size k× k. Assume there
are m users and n items in the data set. We use R ∈ Rm×n
to denote the rating matrix. Please note that there exist
many missing entries in R. All the missing entries are filled
with 0. We use Ω ⊂ {1, 2, · · · ,m} × {1, 2, · · · , n} to denote
the set of indices for the observed ratings. Ωi denotes the
column indices of the observed ratings in the ith row of R,
and Ω̃j denotes the row indices of the observed ratings in
the jth column of R. U ∈ Rk×m denotes the users’ laten-
t factors (matrix) with each column U∗i representing the
latent feature vector for user i, where k is the number of
latent factors for each user or item. V ∈ Rk×n denotes the
items’ latent factors (matrix) with each column V∗j repre-
senting the latent feature vector for item j. P denotes the
total number of nodes in the cluster, and we use the letter p
on the superscript like Mp to denote the computer node id.
‖ · ‖F denotes the Frobenius norm of a matrix or a vector.

2.2 Matrix Factorization
Matrix factorization (MF) can be formulated as the fol-

lowing optimization problem:

min
U,V

1

2

∑
(i,j)∈Ω

[
(Ri,j −UT

∗iV∗j)
2 + λ1U

T
∗iU∗i + λ2V

T
∗jV∗j

]
,

(1)
where λ1 and λ2 are hyper-parameters for regularization.

There are two categories of parallel models to solve the
above MF problem, i.e., the ALS-based models and SGD-
based models, which will be briefly reviewed in the following
subsections.

2.3 ALS-based Parallel MF Models
By adopting the alternating learning strategy, ALS [23]

alternatively switches between updating U and updating V
with the other latent matrix fixed. With U fixed, the MF
problem can be decomposed into n independent least square
problems, each of which corresponds to a column of the ma-
trix V. Similar m independent least square problems can
be got by fixing V. Furthermore, each of these independent



problems has a closed-form solution in ALS:

U∗i ← (λ1miIk + VΩiV
T
Ωi

)−1VRT
i∗, (2)

V∗j ← (λ2njIk + UΩ̃j
UT

Ω̃j
)−1UR∗j ,

where VΩi denotes a sub-matrix formed by the columns in
V indexed by Ωi, UΩ̃j

is similarly defined, mi = |Ωi| and

nj = |Ω̃j |. Please note that all the missing entries in R
have been filled by zeros. The columns in both U and V
can be independently updated by following (2). Hence, it is
easy to design the parallel strategy for ALS, which has been
implemented in [23].

Instead of optimizing the whole vector U∗i or V∗j at one
time, CCD [13] adopts the coordinate descent method to
optimize each element of U∗i or V∗j separately, which can
avoid the matrix inverse operation in (2). CCD++ [21] fur-
ther improves CCD’s performance by changing the updating
sequence in CCD. It rewrites UTV =

∑k
d=1 UT

d∗Vd∗, and
updates one element in Ud∗ or Vd∗ each time by using simi-
lar coordinate descent method in CCD. Changing the updat-
ing sequence may improve the convergence rate, which has
been verified by the experimental results in CCD++ [21].

2.4 SGD-based Parallel MF Models
The idea of SGD is to randomly select one rating index

(i, j) from Ω each time, and then update the corresponding
variables U∗i an V∗j as follows:

U∗i ← U∗i + η(εijV∗j − λ1U∗i), (3)

V∗j ← V∗j + η(εijU∗i − λ2V∗j),

where εij = Rij −UT
∗iV∗j , and η is the learning rate.

Due to the demand of many large-scale problems, several
parallel SGD models have been proposed. Some of them,
such as those described in [25] and [20], are not for MF
problems. Here, we just focus on those parallel SGD models
for MF, including Hogwild! [11], DSGD [4] and FPSGD [24].

From (3), it is easy to find that conflicts exist between t-
wo processes or nodes when their randomly selected ratings
share either the same user index or the same item index.
Hogwild! [11] allows overwriting each other’s work when con-
flicts happen. It also shows that if the optimization problem
is sparse enough, the Hogwild! will get a nearly optimal rate
of convergence.

DSGD [4] divides the whole rating matrix into P stra-
ta and each stratum contains P mutually independent sub-
blocks without sharing any column or row indices. Conse-
quently, sub-blocks in the same stratum can be processed in
parallel since they don’t share any U∗i or V∗j . One iteration
of DSGD is divided into P steps, in each of which DSGD
picks a stratum containing P independent sub-blocks and
then processes these sub-blocks in parallel in a cluster of P
nodes with each node responsible for one sub-block. After
all the P sub-blocks in each step are processed, the whole U
and V have been updated separately. They should be syn-
chronized in order to let all nodes get the latest U and V.
It is obvious that during one iteration of processing all the
ratings in the whole matrix, P synchronization operations
should be performed for DSGD. This frequent synchroniza-
tion will make DSGD inefficient because the slowest node
will become the bottleneck of the whole system.

FPSGD [24], which is proposed for shared-memory sys-
tems, tries to improve the performance by changing the

scheduler of DSGD into an asynchronous one. Its experi-
ments show that FPSGD can achieve better efficiency and
accuracy than DSGD.

Both Hogwild! and FPSGD are only for shared memory
systems with one single node and thus their scalability is
limited. DSGD can be used for distributed systems while it
costs too much on synchronization.

2.5 ADMM
ADMM [3] is used to solve the constrained problems as

follows:

min
x,z

f(x) + g(z) (4)

s.t. : Ax + Bz = c,

where f(·) and g(·) are functions, x and z are variables, A,
B and c are known values.

To solve the problem in (4), ADMM first gets the aug-
mented Lagrangian as follows:

L(x, z,y) = f(x) + g(z) + yT (Ax + Bz− c)

+
ρ

2
‖Ax + Bz− c‖2, (5)

where y is the Lagrangian multiplier and ρ is the penalty
parameter. The ADMM solution can be got be repeating
the following three steps:

xt+1 ← argmin
x

L(x, zt,yt);

zt+1 ← argmin
z

L(xt+1, z,yt);

yt+1 ← yt + ρ(Axt+1 + Bzt+1 − c),

where xt denotes the value of x at the tth iteration, yt
and zt are similarly defined. If f(x) or g(z) are separable,
the corresponding steps of ADMM can be done in parallel.
Hence, ADMM can be used to design distributed learning
algorithms for large-scale problems [3].

In recent years, ADMM has captured more and more
attention with wide applications, such as matrix comple-
tion [5], compressive sensing [19], image restoration [6] and
response prediction [1]. Moreover, many variants of ADMM
are also devised, including the stochastic and online exten-
sions [15, 12, 17]. However, to the best of our knowledge,
few works have been proposed to use stochastic ADMM for
distributed MF problems.

3. DISTRIBUTED STOCHASTIC ADMM
FOR MATRIX FACTORIZATION

In this section, we present the details of our DS-ADMM
model. We first introduce our data split strategy to divide
the whole problem into several sub-problems. Then we pro-
pose a distributed ADMM framework to handle these sub-
problems in parallel. After that, a stochastic learning algo-
rithm is designed to speed up the distributed ADMM frame-
work. Subsequently, we compare the scheduler of DS-ADMM
with those of DSGD and CCD++. Finally, the complexity
analysis of DS-ADMM will be provided.

3.1 Data Split Strategy
In our data split strategy, we divide R and U into P sub-

blocks according to users. More specifically, each sub-block
will contain m

P
rows of R and m

P
columns of U. From (1), we

find that U and V are coupled together in the loss function.



Updating one of them needs the other’s latest value, which
makes the problem hardly separable. To decouple U and V,
we keep a local item latent matrix for all items in each node,
which is denoted as Vp. Please note that Vp is not a sub-
block of V, but it has the same size with V. We also have
a global item latent matrix which is denoted as V. Because
only the local Vp couples with U, we can independently up-
date U and Vp for each node. This split strategy can make
the MF problem fit for the distributed ADMM framework,
which will be introduced in the following subsection.

Our split strategy is called LocalMFSplit, which is briefly
summarized in Algorithm 1. Note that the size of Vp is
k × n, but that of Up is k ×mp with mp being the number
of columns (about m

P
) assigned to node p.

Algorithm 1 LocalMFSplit

1: Input: R, P
2: for i = 1 : m do
3: Generate a random number p from {1, 2, · · · , P}, and

distribute row i of R to node p.
4: end for
5: for p = 1 : P parallel do
6: Allocate memory for Up, Vp and V
7: end for

3.2 Distributed ADMM
Based on our split strategy LocalMFSplit, the MF problem

in (1) can be reformulated as follows:

min
U,V,V

1

2

P∑
p=1

∑
(i,j)∈Ωp

[
(Ri,j −UT

∗iV
p
∗j)

2

+ λ1U
T
∗iU∗i + λ2[Vp

∗j ]
TVp
∗j

]
(6)

s.t. : Vp −V = 0; ∀p ∈ {1, 2, ..., P}

where V = {Vp}Pp=1, Ωp denotes the (i, j) indices of the
ratings located in node p. Note that here we omit the p in
Up for simplicity. It is not hard to determine whether U
refers to the whole latent matrix or a sub-block Up located
in node p from the context.

If we define

f(U,V) =

P∑
p=1

fp(U,Vp), (7)

where

fp(U,Vp) =
∑

(i,j)∈Ωp

f̂i,j(U∗i,V
p
∗j), (8)

f̂i,j(U∗i,V
p
∗j) =

1

2

[
(Ri,j −UT

∗iV
p
∗j)

2

+ λ1U
T
∗iU∗i + λ2[Vp

∗j ]
TVp
∗j

]
,

we can transform the constrained problem in (6) to an un-
constrained problem with augmented Lagrangian method,
and get the following objective function:

L(U,V,O,V) = f(U,V) + l(V,V,O), (9)

where

l(V,V,O) =

P∑
p=1

lp(Vp,V,Θp),

lp(Vp,V,Θp) =

[
ρ

2
‖Vp −V‖2F + tr

(
[Θp]T (Vp −V)

)]
.

Here, ρ is a hyper-parameter and O = {Θp}Pp=1 denotes the
Lagrangian multiplier.

If we define

Lp(U,Vp,Θp,V) = fp(U,Vp) + lp(Vp,V,Θp)

=
∑

(i,j)∈Ωp

f̂i,j(U∗i,V
p
∗j)

+

[
ρ

2
‖Vp −V‖2F + tr

(
[Θp]T (Vp −V)

)]
,

we can get

L(U,V,O,V) =

P∑
p=1

Lp(U,Vp,Θp,V).

The ADMM will solve this problem by repeating the fol-
lowing steps:

Ut+1,V
p
t+1 ← argmin

U,Vp
Lp(U,Vp,Θp

t ,Vt),∀p ∈ {1, 2, ..., P}

(10a)

Vt+1 ← argmin
V

L(Ut+1,Vt+1,Ot,V), (10b)

Θp
t+1 ← Θp

t + ρ(Vp
t+1 −Vt+1), ∀p ∈ {1, 2, ..., P}.

(10c)

It is easy to see that U,Vp and Θp can be locally updated
on each node. Because the whole MF problem has been
divided into P sub-problems which can be solved in parallel,
our method is actually a distributed ADMM framework.

3.3 Stochastic Learning for Distributed ADMM
To learn the parameters in (6), we just need to find the

solutions in (10a), (10b) and (10c). After getting the op-
timal Ut+1 and {Vp

t+1}, it is easy to solve the problem
in (10b). More specifically, if we set Θp

0 = 0, we can prove

that
∑P
p=1 Θp

t = 0. Hence, the update rule for V is:

Vt+1 =
1

P

P∑
p=1

Vp
t+1. (11)

The problem in (10c) directly shows the update rule, which
can be computed locally and efficiently. Therefore, the key
learning part lies in how to efficiently solve the problem
in (10a). In the following content of this subsection, we first
design a batch learning algorithm for the problem in (10a),
and then a stochastic learning algorithm inspired by the
batch learning is also designed to further improve the ef-
ficiency.

3.3.1 Batch Learning
With Θp

t and Vt fixed, (10a) is an MF problem. How-
ever, we can not easily get the solution because U and Vp

are coupled together and the objective function of the MF
problem is non-convex. To get an efficient solution, we use
a technique similar to that in [12] to construct a surrogate



objective function, which is convex and can make U and V
decouple from each other. For each iteration of minimizing
the constructed function, we can easily get the closed form
solution of U and Vp by setting their gradients to zero.

The surrogate objective function is defined as follows:

Gp(U,Vp,Θp
t ,Vt, τt|Ut,V

p
t )

= gp(U,Vp, τt|Ut,V
p
t ) + lp(Vp,Vt,Θ

p
t ), (12)

where

gp(U,Vp, τt|Ut,V
p
t )

= fp(Ut,V
p
t ) + tr[∇TUfp(Ut,V

p
t )(U−Ut)]

+ tr[∇TVpfp(Ut,V
p
t )(Vp −Vp

t )]

+
1

2τt
(‖U−Ut‖2F + ‖Vp −Vp

t ‖
2
F ), (13)

with τt being a value which will be useful for specifying the
step-size in the stochastic learning method introduced later,
and the function fp(U,Vp) being defined in (8).

Lemma 1. For an arbitrary positive value δ2, we can al-
ways find a τt that makes Gp(·) satisfy the following two
properties within the domain D = {U,Vp | ‖U∗i−[U∗i]t‖2F ≤
δ2, ‖Vp

∗j − [Vp
∗j ]t‖

2
F ≤ δ2}:

Gp(U,Vp,Θp
t ,Vt, τt|Ut,V

p
t ) ≥ Lp(U,Vp,Θp

t ,Vt),

Gp(Ut,V
p
t ,Θ

p
t ,Vt, τt|Ut,V

p
t ) = Lp(Ut,V

p
t ,Θ

p
t ,Vt).

The proof of Lemma 1 can be found in Appendix A.
From Lemma 1 , we can find that Gp(·) is an upper bound

of Lp(·), andGp(·) = Lp(·) at the point (Ut,V
p
t ). Compared

with Lp(·), U and Vp are decoupled in Gp(·), and Gp(·) is
convex in (U,Vp). Hence, it is much easier to optimize
Gp(·) than Lp(·).

Instead of optimizing the original function Lp(·), we op-
timize the surrogate function Gp(·) in the first step of the
ADMM:

Ut+1,V
p
t+1 ← argmin

U,Vp
Gp(U,Vp,Θp

t ,Vt, τt|Ut,V
p
t ) (14a)

The objective function in (14a) is convex in both U and
Vp. Hence, we can easily get the solution by setting the
gradients to be zero. The optimal solution is computed as
follows:

Ut+1 = Ut − τt ∗ ∇TUfp(Ut,V
p
t ), (15)

Vp
t+1 =

τt
1 + ρτt

[
Vp
t

τt
+ ρVt −Θp

t −∇
T
Vpfp(Ut,V

p
t )]. (16)

Lemma 2. By following the update rules in (15) and (16),
the original objective function Lp(·) will not increase in each
step. That is to say,

Lp(Ut+1,V
p
t+1,Θ

p
t ,Vt) ≤ Lp(Ut,V

p
t ,Θ

p
t ,Vt). (17)

The proof of Lemma 2 can be found in Appendix B.
By combining the update rules in (15), (16), (11) and

(10c), we can get a batch learning algorithm for the problem
in (6) with the distributed ADMM framework.

Theorem 1. Our batch learning algorithm will converge.

Proof. Based on Lemma 2, we can prove that the objec-
tive function L(·) in (9) will decrease in each iteration of AD-

MM. Furthermore, L(·) is lower bounded by −
∑P

p=1 ||Θ
p||2F

2ρ
.

Hence, our batch learning algorithm will converge. Because
L(·) is not convex, it might converge to a local minimum.

3.3.2 Stochastic Learning
From (15), we can find that it will access all ratings relat-

ed to U∗i to update each U∗i, and the same also goes for
updating each Vp

∗j in (16). Hence, the batch learning algo-
rithm presented above is not efficient, especially when the
number of ratings becomes very large. To further improve
the efficiency, we propose a stochastic learning strategy for
the distributed ADMM, which is called DS-ADMM. In par-
ticular, the update rules for DS-ADMM is as follows:

(U∗i)t+1 =(U∗i)t + τt(εij(V
p
∗j)t − λ1(U∗i)t), (18)

(Vp
∗j)t+1 =

τt
1 + ρτt

[
1− λ2τt

τt
(Vp
∗j)t

+εij(U∗i)t + ρ(V∗j)t − (Θp
∗j)t], (19)

where εij = Rij − [(U∗i)t]
T (Vp

∗j)t. It is easy to see that
the stochastic learning algorithm is derived from the batch
learning algorithm by treating only U∗i and Vp

∗j as variables
in (14a).

By combining the split strategy and the update rules stat-
ed above, we can get our DS-ADMM algorithm. The whole
procedure of DS-ADMM is briefly listed in Algorithm 2.

Algorithm 2 DS-ADMM

1: Input: R, P, ρ,MaxIter, λ1, λ2, τ0;
2: Use Algorithm 1 to distribute R to P different nodes.
3: Randomly initialize U0,Vp

0 ;
4: Calculate V0 by (11)
5: Set Θp

0 = 0.
6: for t = 1 : MaxIter do
7: for p = 1 : P parallel do
8: for each Ri,j in node p do
9: Update U∗i and Vp

∗j by (18) and (19)
10: end for
11: end for
12: Update V by (11)
13: for p = 1 : P parallel do
14: Update Θp by (10c)
15: end for
16: Update τt
17: end for

3.4 Scheduler Comparison
CCD++ and DSGD are two state-of-the-art distributed

MF models. We compare the scheduler of our DS-ADMM
with those of CCD++ and DSGD to illustrate the synchro-
nization cost.

Figure 1 (a), (b) and (c) show the number of synchro-
nization operations in one iteration of CCD++, DSGD and
DS-ADMM, respectively. Here, one iteration means all the
training ratings are processed for one time. We can find
that CCD++ needs 2k times of synchronization and DSGD
needs P times. From Algorithm 2, we can easily find that
DS-ADMM needs only one synchronization for each itera-
tion, which is shown in line 12. This synchronization step
is used to gather all Vp. Hence, it is obvious that the syn-
chronization cost of our DS-ADMM is much less than those
of CCD++ and DSGD.

3.5 Complexity Analysis
DS-ADMM updates all variables once by three steps. Step

one updates U and Vp. For each rating Rij , the time com-
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Figure 1: Operations in one iteration of CCD++, DSGD, and DS-ADMM. It shows that CCD++ and DSGD need

multiple times of synchronization while DS-ADMM needs only one synchronization for each iteration.

plexity to update U∗i and Vp
∗j is O(k2). Because the total

number of observed ratings is |Ω|, the time complexity of
step one is O(k2|Ω|). Step two is actually a summation of P
matrices of size k× n, thus the time complexity is O(Pnk).
Step three need to update P matrices of size k× n, and the
update operation only contains constant times of addition,
so the time complexity is O(Pnk). In total, the time com-
plexity of DS-ADMM for each iteration is O(k2|Ω|+ Pnk).

4. EXPERIMENTS
All the experiments are run on an MPI-cluster with twenty

nodes, each of which is a 24-core server with 2.2GHz Intel(R)
Xeon(R) E5-2430 processor and 96GB of RAM. To evaluate
the scale-out performance of our model, we use only one 1
core (thread) and 10GB memory for each node.

4.1 Data Sets
We run our experiments on three public collaborative fil-

tering data sets: Netflix 2, Yahoo! Music R1, and Yahoo! Mu-
sic R2 3. The Netflix data set contains the users’ ratings to
movies. Yahoo! Music R1 data set contains the users’ rat-
ings to artists. Yahoo! Music R2 contains the users’ ratings
to songs.

As the original ratings of Yahoo! Music R1 are ranging
from 0− 100 and have value Never play again, we treat the
ratings with value 0 and Never play again as the explicit
negative feedback and filter them out. For the other ratings,
we normalize them by multiplying each rating by 0.05. After
preprocessing, all the ratings lie in the range of [0.05, 5].

The Netflix and Yahoo! Music R2 data sets also contain
public test data sets, which are used in our experiments. For
the Yahoo! Music R1 data set, we randomly select 10% of the

2http://www.netflixprize.com/
3http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

ratings for testing and the remaining are used for training.
Detailed information of these data sets are shown in the first
four rows in Table 1.

Table 1: Data sets and parameter settings

Data Set Netflix Yahoo! Music R1 Yahoo! Music R2

m 480,190 1,938,361 1,823,179
n 17,770 49,995 136,736

#Train 99,072,112 73,578,902 699,640,226
#Test 1,408,395 7,534,592 18,231,790
k 40 40 40

η0/τ0 0.1 0.1 0.1
λ1 0.05 0.05 0.05
λ2 0.05 0.05 0.05
ρ 0.05 0.05 0.1
α 0.002 0.002 0.006
β 0.7 0.7 0.7
P 8 10 20

4.2 Baselines and Parameter Settings
FPSGD and Hogwild! can only run on multi-core systems

while we focus on distributed algorithms in this paper. So
CCD++, DSGD and DSGD-Bias are adopted as our base-
lines.

CCD++ is implemented by referring to the public OpenMP
version4. DSGD is implemented according to [4] with an
asynchronous scheduler to improve its performance.

We also implement a variant of DSGD called DSGD-Bias
by using the prediction function: Ri,j = µ+bi+bj+UT

∗iV∗j ,
where bi, bj are the user and item bias for ratings and µ is
the global mean of the ratings. The model with bias is an

4http://www.cs.utexas.edu/∼rofuyu/libpmf/
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Figure 2: Test RMSE curve for CCD++, DSGD, DSGD-Bias and DS-ADMM. (a) Netflix data set; (b)Yahoo! Music

R1 data set; (c) Yahoo! Music R2 data set. The vertical axis is the RMSE on the test set, and the horizontal axis is

the running time.

easy and natural extension of MF and has been proved to
be more accurate than those without bias [8]. DSGD-Bias
model is optimized and paralleled by using the same strategy
as that in DSGD.

During our experiments, we find that good results can
be achieved by setting λ1 = λ2 for all the algorithms. So
we simply set λ1 = λ2 in our experiments. All the hyper-
parameters for each model in our experiments are selected
by ten-fold cross validation on the training set except the
latent factor number k and the number of computing nodes
P . k is selected by following the CCD++ [21]. Actually,
we find that on our data sets larger k doesn’t achieve much
better accuracy for CCD++ while increasing the running
time. The node number P is set according to the size of the
data sets. All the algorithms have the same P for the same
data set.

We use a general and simple update rule for DSGD’s learn-
ing rate. More specifically, we first initialize the learning
rate η with a relatively large value, then decrease it by
ηt+1 = ηt ∗ β (0 < β < 1) after each iteration, and stop
decreasing when η becomes smaller than some threshold α.
This strategy results in a fast convergence rate and avoids
early stopping.

DS-ADMM has a similar step-size parameter τt. From
the detailed proof in Appendix A, we find that τt should be
smaller than some threshold computed based on Ut and Vp

t .
Because the exact threshold value for τt is hard to calculate,
we approximately update it as τt+1 = τt ∗ β (0 < β < 1) for
the tth iteration. We also set a threshold α. When τt ≤ α,
we stop decreasing τt. It is easy to find that the update rule
for τt is the same as that for the DSGD’s learning rate η.

The parameter settings are shown in the last eight rows
in Table 1.

4.3 Accuracy and Efficiency
The root mean squared error (RMSE) is a widely used

metric to measure an MF model’s performance [21]. The

test RMSE is defined as: 1
Q

√∑
(Ri,j −UT

∗iV∗j)
2, where Q

is the number of testing ratings. Figure 2 shows the test
RMSE versus running time for our DS-ADMM and other

baselines. We can easily find that DS-ADMM performs the
best on all three data sets. RMSE value of CCD++ and
the DSGD-Bias model decreases fast at first for some da-
ta sets because CCD++ updates the parameters by their
closed-form solutions and the DSGD-Bias model extracts
more explicit information from the training data set. How-
ever, our DS-ADMM decreases much faster afterwards and
finally converges to the best accuracy, which is much better
than the DSGD-Bias model and CCD++. DSGD performs
the worst among all the models in most cases. Moreover,
as the scale of the data set grows, the difference between C-
CD++, DSGD and DSGD-bias’s convergence value becomes
smaller, but their difference to DS-ADMM becomes larger.
Note that Yahoo! Music R2 has about 0.7 billion ratings,
which is much larger than many real world applications.

In some application scenarios, the learning process stops
when the RMSE value reaches some threshold. So we de-
velop experiments to test those algorithms’ running time
to reach the given threshold with different number of com-
puting nodes. When conducting experiments on the Netflix
data set, we set the threshold of RMSE value as 0.922. This
value is chosen because it is the place where the RMSE
curves of DS-ADMM and CCD++ become smooth, and it
is also a value that DSGD and DSGD-Bias can reach if pro-
vided with enough running time. We report the log-scale
of the running time in Figure 3. Results on the other two
data sets are similar, which are omitted due to the limit-
ed space. From Figure 3, we can find that our DS-ADMM
outperforms all the other algorithms no matter how many
nodes are used. DS-ADMM needs relatively fewer iterations
to reach a test RMSE of 0.922 and its running time for each
iteration is the smallest among all algorithms. DSGD per-
forms the worst since it should run more iterations to reach
a test RMSE of 0.922 and the running time for each iteration
is also relatively large.

4.4 Speedup
Another important metric that can be used to measure a

distributed algorithm is its speedup or scalability. It mea-
sures the performance when more machines are used or larg-
er data sets are processed. In general, more machines and
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Figure 3: Average running time to reach a test RMSE

of 0.922 on the Netflix data set for different methods.

larger data sets will increase the communication and schedul-
ing costs. Algorithms with poor scalability consume more
computing resources without offering a good reward, so they
are not suitable for large-scale applications.

To study the scalability of our algorithm, we compute the
speedup factor relative to the running time with 2 nodes by
varying the number of nodes from 2 to 8. Speedup factors
of CCD++ and DSGD are provided for comparison. The
results on the Netflix data set are shown in Figure 4. Results
on other data sets are similar, which are omitted for space
saving.
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Figure 4: Speedup comparison between CCD++,

DSGD, and DS-ADMM on the Netflix data set.

It is obvious from Figure 4 that DS-ADMM achieves the
best speedup among all three algorithms. Figure 4 also
shows that both DSGD and DS-ADMM have a super-linear

speedup. This might be reasonable. More specifically, as the
number of computing nodes increases, the scale of the data
set on each node decreases. With a relatively large cache
size, most data or even the whole data set can be loaded in-
to caches and thus the accessing cost is reduced, which will
gain extra speedup [2, 7]5.

By separately measuring the computing cost and synchro-
nization cost in our experiments, we find that DSGD cost-
s much more time on communication and synchronization
than DS-ADMM. Taking the Netflix experiment as an ex-
ample, although the total running time for each iteration are
nearly the same for DSGD and DS-ADMM, DSGD spends
about 18% of the total time on communication and synchro-
nization, while that is only 8% for DS-ADMM. This result
verifies our previous analysis on the synchronization issue in
DSGD.

4.5 Sensitivity to Hyper-parameter ρ

We vary the values of ρ to study its effect on the per-
formance of DS-ADMM, the results of which are shown in
Figure 5. We can find that very good performance can be
achieved when ρ is around 0.05 for all data sets, and our
DS-ADMM is not sensitive to ρ in the range [0.03, 0.1].
This relatively stable property of ρ makes hyper-parameter
selection much easier.

5. CONCLUSION
In this paper, we propose a new distributed algorithm

called DS-ADMM for large-scale matrix factorization in rec-
ommender systems. We first design a data split strategy
to divide the large-scale problem into several sub-problems
and then derive a distributed stochastic variant of ADMM
for efficient learning. Experiments on real world data set-
s show that our DS-ADMM algorithm can outperform the
state-of-the-art methods like DSGD and CCD++ in terms
of accuracy, efficiency and scalability.
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APPENDIX
A. PROOF OF LEMMA 1

Proof. We can rewrite

gp(U,Vp, τt|Ut,V
p
t ) =

∑
(i,j)∈Ωp

gpi,j(U∗i,V
p
∗j , τt|Ut,V

p
t ),

where

gpi,j(U∗i,V
p
∗j ,τt|Ut,V

p
t )

=

[
f̂i,j([U∗i]t, [V

p
∗j ]t)

+∇TU∗i f̂i,j([U∗i]t, [V
p
∗j ]t)(U∗i − [U∗i]t)

+∇TVp
∗j
f̂i,j([U∗i]t, [V

p
∗j ]t)(V

p
∗j − [Vp

∗j ]t)

+
1

2miτt
‖U∗i − [U∗i]t‖2F

+
1

2njτt
‖Vp
∗j − [Vp

∗j ]t‖
2
F

]
,



with mi = |Ωpi | and nj = |Ω̃pj |.
Then, we have

Lp(U,Vp,Θp
t ,Vt)−Gp(U,Vp,Θp

t ,Vt, τt|Ut,V
p
t )

= fp(U,Vp)− gp(U,Vp, τt|Ut,V
p
t )

=
∑

(i,j)∈Ωp

[
f̂i,j(U∗i,V

p
∗j)− g

p
i,j(U∗i,V

p
∗j , τt|Ut,V

p
t )

]
,

For clarity, we denote U∗i,V
p
∗j ,[U∗i]t and [Vp

∗j ]t as u,v,ut
and vt, respectively. Then we have

f̂i,j(u,v) =
1

2

[(
Ri,j − (u− ut + ut)

T (v − vt + vt)
)2

+ λ1‖u− ut + ut‖2F + λ2‖v − vt + vt‖2F
]

= f̂i,j(ut,vt) +∇Tu f̂i,j(ut,vt)(u− ut)

+∇Tv f̂i,j(ut,vt)(v − vt)

+ h(u,v) + o(u,v),

where

∇Tu f̂i,j(ut,vt) = λ1ut − (Ri,j − uTt vt)vt,

∇Tv f̂i,j(ut,vt) = λ2vt − (Ri,j − uTt vt)ut,

h(u,v) contains all the second order terms, and the third
order and forth order terms are contained in o(u,v). Hence,
we can get

h(u,v) =
λ1

2
‖u− ut‖2F +

λ2

2
‖v − vt‖2F

− (Ri,j − uTt vt)(u− ut)
T (v − vt)

+
1

2

(
uTt (v − vt) + (u− ut)

Tvt
)2
,

and

o(u,v) =
1

2
[2(u− ut)

Tvt + 2(v − vt)
Tut

+ (u− ut)
T (v − vt)](u− ut)

T (v − vt).

Because

− (Ri,j − uTt vt)(u− ut)
T (v − vt)

≤ 1

2
|Ri,j − uTt vt|

(
‖u− ut‖2F + ‖v − vt‖2F

)
,

and

1

2

(
uTt (v − vt) + (u− ut)

Tvt
)2

≤ ‖uTt (v − vt)‖2F + ‖(u− ut)
Tvt‖2F

≤ ‖ut‖2F ‖v − vt‖2F + ‖vt‖2F ‖u− ut‖2F ,

we have

h(u,v) ≤ (
λ1

2
+

1

2
|Ri,j − uTt vt|+ ‖vt‖2F )‖u− ut‖2F

+ (
λ2

2
+

1

2
|Ri,j − uTt vt|+ ‖ut‖2F )‖v − vt‖2F .

Because

|(u− ut)
T (v − vt)| ≤ (‖u− ut‖2F + ‖v − vt‖2F )/2,

we have

|2(u− ut)
Tvt + 2(v − vt)

Tut + (u− ut)
T (v − vt)|

≤|2(u− ut)
Tvt|+ |2(v − vt)

Tut|+ |(u− ut)
T (v − vt)|

≤‖u− ut‖2F + ‖vt‖2F + ‖v − vt‖2F

+ ‖ut‖2F +
1

2
[‖u− ut‖2F + ‖v − vt‖2F ]

≤‖ut‖2F + ‖vt‖2F + 3δ2,

Then we can prove

o(ut,vt) ≤ |o(ut,vt)| ≤
1

4

(
‖ut‖2F + ‖vt‖2F + 3δ2)

×
(
‖u− ut‖2F + ‖v − vt‖2F

)
.

Because ||u− ut||2F ≤ δ2 and ||v− vt||2F ≤ δ2, we can get

f̂i,j(u,v) ≤ f̂i,j(ut,vt) +∇Tu f̂i,j(ut,vt)(u− ut)

+∇Tv f̂i,j(ut,vt)(v − vt)

+(
5

4
‖vt‖2F +

1

4
‖ut‖2F +

3

4
δ2 +

1

2
λ1

+
1

2
|Ri,j − uTt vt|)‖u− ut‖2F

+(
5

4
‖ut‖2F +

1

4
‖vt‖2F +

3

4
δ2 +

1

2
λ2

+
1

2
|Ri,j − uTt vt|)‖v − vt‖2F .

So if we let

1

τt
≥ max{2mi

[5

4
‖vt‖2F +

1

4
‖ut‖2F +

3

4
δ2 +

1

2
λ1

+
1

2
|Ri,j − uTt vt|

]
,

2nj
[5

4
‖ut‖2F +

1

4
‖vt‖2F +

3

4
δ2 +

1

2
λ2

+
1

2
|Ri,j − uTt vt|

]
},

we can prove that

Gp(U,Vp,Θp
t ,Vt, τt|Ut,V

p
t ) ≥ Lp(U,Vp,Θp

t ,Vt).

That is to say, τt should be smaller than some value which
is dependent on the current Ut and Vp

t .
The second equation in Lemma 1 can be easily proved.

B. PROOF OF LEMMA 2
Proof. From Lemma 1, we have

Gp(Ut+1,V
p
t+1,Θ

p
t ,Vt, τt|Ut,V

p
t )

≥ Lp(Ut+1,V
p
t+1,Θ

p
t ,Vt),

Gp(Ut,V
p
t ,Θ

p
t ,Vt, τt|Ut,V

p
t ) = Lp(Ut,V

p
t ,Θ

p
t ,Vt).

Furthermore, we have

Gp(Ut+1,V
p
t+1,Θ

p
t ,Vt, τt|Ut,V

p
t )

≤ Gp(Ut,V
p
t ,Θ

p
t ,Vt, τt|Ut,V

p
t ).

Hence, we can get

Lp(Ut+1,V
p
t+1,Θ

p
t ,Vt) ≤ Lp(Ut,V

p
t ,Θ

p
t ,Vt).


