
Blocking-based Neighbor Sampling for Large-scale Graph Neural Networks

Kai-Lang Yao and Wu-Jun Li∗

National Key Laboratory for Novel Software Technology
Collaborative Innovation Center of Novel Software Technology and Industrialization

Department of Computer Science and Technology, Nanjing University, China
yaokl@lamda.nju.edu.cn, liwujun@nju.edu.cn

Abstract

The exponential increase in computation and mem-
ory complexity with the depth of network has be-
come the main impediment to the successful appli-
cation of graph neural networks (GNNs) on large-
scale graphs like graphs with hundreds of million-
s of nodes. In this paper, we propose a novel
neighbor sampling strategy, dubbed blocking-based
neighbor sampling (BNS), for efficient training of
GNNs on large-scale graphs. Specifically, BNS
adopts a policy to stochastically block the ongo-
ing expansion of neighboring nodes, which can re-
duce the rate of the exponential increase in com-
putation and memory complexity of GNNs. Fur-
thermore, a reweighted policy is applied to graph
convolution, to adjust the contribution of blocked
and non-blocked neighbors to central nodes. We
theoretically prove that BNS provides an unbiased
estimation for the original graph convolution oper-
ation. Extensive experiments on three benchmark
datasets show that, on large-scale graphs, BNS is
2× ∼ 5× faster than state-of-the-art methods when
achieving the same accuracy. Moreover, even on
the small-scale graphs, BNS also demonstrates the
advantage of low time cost.

1 Introduction
Graph has been widely used for describing unstructured data
in real applications such as social networks, brain networks,
molecular graphs, and knowledge graphs. Edges in graph-
s depict the complex relationships between samples, and rich
relational information between samples is contained in graph-
s. Making good use of the rich relational information be-
tween samples in graphs has great potential in boosting the
performance of traditional machine learning methods which
are mainly designed for modeling independent and identical-
ly distributed (i.i.d.) data. In addition, graph data is now
widely available in many applications. Therefore, developing
advanced graph learning algorithms is a topic of great inter-
est.

∗Corresponding author

Among various algorithms of representation learning for
graphs, graph neural networks (GNNs) [Gori et al., 2005;
Bruna et al., 2014] have recently become the most successful
and popular ones, due to their powerful ability in modeling
complex relationships between samples. Although many ad-
vanced GNN models [Kipf and Welling, 2017; Hamilton et
al., 2017; Velickovic et al., 2018] have been proposed, most
of them are limited to the successful application on small-
scale graphs (e.g., graphs with hundreds of thousands of n-
odes). There are significant challenges in applying existing
GNN methods to applications with large-scale graphs (e.g.,
graphs with hundreds of millions of nodes) because of the
expensive computation and memory cost during the train-
ing process. Due to the iteratively dependent nature of n-
odes in GNNs, the number of nodes supporting the compu-
tation of output layer exponentially increases with the depth
of network. Hence, the computation and memory complexity
grow exponentially. Moreover, recent works [Li et al., 2019;
Verma and Zhang, 2020; Chen et al., 2020c] show the poten-
tial to improve the performance of GNN models as the net-
work becomes deeper, which will undoubtedly exacerbate the
problem of expensive cost on large-scale graphs. Nowadays,
in order to speed up the training process, it is a dominan-
t trend to perform training on GPUs. However, many GPUs
have limited graphics memory, which hinders GNN models
from training with large batch size and as a result leads to a
sharp increase in time cost for training.

Solutions for the above problem mainly include model sim-
plification methods and sampling-based methods. For model
simplification methods [Wu et al., 2019; Klicpera et al., 2019;
Chen et al., 2020b], the main idea is to remove the non-
linear transformation between graph convolution layers such
that the graph convolution on node features can be prepro-
cessed before training. Although model simplification meth-
ods are efficient in training, as stated in [Chen et al., 2020a],
it is still an open question whether simplified GNNs’ ex-
pressive power can match that of the original GNNs. For
sampling-based methods, existing works can be broadly cat-
egorized into node-wise sampling [Hamilton et al., 2017;
Chen et al., 2018a; Cong et al., 2020], layer-wise sampling
[Chen et al., 2018b; Huang et al., 2018; Zou et al., 2019], and
subgraph sampling [Chiang et al., 2019; Zeng et al., 2020].
For node-wise sampling, the main idea is to sample a num-
ber of neighbors for each node of each layer in a top-down

manner. For layer-wise sampling, the main idea is to inde-
pendently sample a number of nodes from a candidate set for
each layer based on the importance probabilities of nodes.
All connections between the nodes of two adjacent layers are
used to perform approximate graph convolution. For sub-
graph sampling, the main idea is to sample a subgraph and
feed it to GNN models before each round of mini-batch train-
ing. Although the above sampling strategies are applicable to
large-scale GNNs, they have some deficiencies or limitation-
s in terms of accuracy, total time cost, or memory cost. For
example, existing node-wise sampling strategies need to sam-
ple a large number of neighbors for high accuracy, which will
lead to a sharp increase in time cost. Layer-wise sampling
strategies have a high time cost of preparing data (including
sampling) and may suffer from sparse connection between t-
wo adjacent layers. Subgraph sampling strategies may also
suffer from sparse connection in subgraphs.

In this paper, we propose a novel node-wise sampling s-
trategy, called blocking-based neighbor sampling (BNS), for
large-scale training of GNNs. The contributions of this paper
are listed as follows:

• We propose a novel blocking mechanism in BNS to s-
tochastically block the ongoing expansion of neighbor-
ing nodes, dramatically reducing the computation and
memory complexity.

• We further propose a reweighted policy to adjust the
contribution of blocked and non-blocked neighboring n-
odes to central nodes.

• We theoretically prove that BNS provides an unbiased
estimation for the original graph convolution operation.

• Extensive experiments on large-scale graphs show that
BNS is 2× ∼ 5× faster than existing state-of-the-art
methods when achieving the same accuracy. Even on the
small-scale graph, BNS also demonstrates the advantage
of low time cost.

2 Notations and Problem Definition
2.1 Notations
We use boldface uppercase letters, such as B, to denote matri-
ces. The ith row and the jth column of a matrix B are denoted
as Bi∗ and B∗j , respectively. Bij denotes the element at the
ith row and jth column in B. ‖B‖0 denotes the number of
non-zero entries in B. ‖B‖F denotes the Frobenius norm of
B.

2.2 Problem Definition
Suppose we have a graph withN nodes. Let A ∈ {0, 1}N×N
denote the adjacency matrix of the graph. Aij = 1 denotes
there exists an edge between node i and node j, and Aij = 0
denotes there is no edge between them. Let X ∈ RN×u de-
note the node feature matrix, where u denotes the dimension
of node feature. Suppose the average number of neighbors
per node in the graph is s. Suppose the mini-batch size of
nodes at output layer isB. We use L to denote the layer num-
ber of GNNs.

We take GCN [Kipf and Welling, 2017] as an example
to describe the problem of the exponential increase in com-
putation and memory complexity. Let A′ = A + I and
Â = D−

1
2A′D−

1
2 , where D denotes the diagonal degree

matrix of A′ and Dii =
∑n

j=1A
′
ij . Then GCN can be for-

mulated as follows:

Z
(`)
i∗ =

∑
j∈N (i)

ÂijH
(`−1)
j∗ , H

(`)
i∗ = f(Z

(`)
i∗W

(`)), (1)

where H(0) = X, f(·) is the activation function, N (i) de-
notes the set of neighbors of node i. W(`) ∈ Rr×r is a learn-
able parameter.

From (1), we can see that the output of a node at the Lth
layer iteratively depends on the information of its 1, · · · , L-
hop neighbors. Such an iteratively dependent nature of n-
odes leads to the exponential increase in computation and
memory complexity with the depth of network. Let r denote
the feature dimension of hidden layer. Then, the computa-
tion and memory complexity during a mini-batch training are
O(sL−1 · (sBr+Br2)) andO(Lr2 + sL ·Br), respectively.

3 Blocking-based Neighbor Sampling
In this section, we present the details of BNS. Firstly, we sam-
ple a fixed number of neighbors for each node at the current
layer `. Secondly, we adopt a policy to stochastically block
the ongoing expansion of neighboring nodes at the preceding
layers {1, · · · , `−1}. Note that once a node is blocked, all its
ways out to all other nodes are blocked, and it is trapped at its
current position. Thirdly, after sampling finishes, reweight-
ed graph convolution is performed to obtain the outputs, in
which a reweighted policy is adopted to adjust the contribu-
tion of blocked and non-blocked neighbors to central nodes.
A visual illustration of BNS is presented in Figure 1.

(a) non-sampling (b) BNS

Figure 1: A visual illustration of BNS. Solid circles refer to nodes.
The node within the inner dashed circle refers to the node of output
layer. (a) We assume each node has 5 neighbors. (b) Black solid
circles refer to blocked neighbors. The thickness of solid lines that
connect two nodes indicates the magnitude of weights of nodes in
reweighted graph convolution.

3.1 Sampling Algorithm
The entire sampling process is performed in a top-down man-
ner, and it is summarized in Algorithm 1. Suppose Vin de-
note a mini-batch of nodes in the output layer. Firstly, we
sample sn neighbors for each node i at layer ` in line 5.
Sample(N (i), sn) in line 5 is an operation that uniformly

samples sn elements from N (i). Then, we randomly se-
lect sn × δ (0 ≤ δ ≤ 1) nodes from N `(i) in line 6,
and stop sampling neighbors for them at the preceding lay-
ers {1, · · · , ` − 1} via the operations in line 7 and line 13.
Block(N `(i), δ) in line 6 is an operation that uniformly sam-
ples |N `(i)| × δ elements from N `(i) as blocked neighbors.
V`
b records the blocked nodes at the `th layer, which are used

in subsequent processing steps. The operations in line 10 and
line 11 ensure that the blocked nodes are mapped to the same
feature space as non-blocked nodes.

3.2 Reweighted Graph Convolution
We first reformulate Z

(`)
i∗ in Equation (1) to an expectation

form:
Z

(`)
i∗ = |N (i)| · Ej∼p(j∈N (i)|i)ÂijH

(`−1)
j∗ , (2)

where p(j ∈ N (i)|i) is a uniform distribution over the neigh-
bors of node i. |N (i)| denotes the number of elements in
N (i).

For blocked nodes, since their neighbor expansions are
blocked, their estimation for Equation (2) is less precise (hav-
ing large variance) than non-blocked nodes. We can see
that representations of blocked nodes carry little informa-
tion about the input graph. Therefore, it is reasonable to in-
crease the contribution of non-blocked nodes to the central
nodes. We perform reweighted graph convolution to achieve
this goal.

After Algorithm 1 is performed, reweighted graph convo-
lution is formulated as follows. For readability, we denote
n`i,1 = |N `

b (i)|, n`i,2 = |N `
nb(i)| and ni = |N (i)|.

ρ`i,1 = ρ ·
n`i,1 + n`i,2

n`i,1
, ρ`i,2 = (1− ρ) · n

`
i + ñ`i
n`i,2

, (3)

Ã`
ij = ρ`i,1 ·

ni
n`i,1 + n`i,2

· Âij , ∀j ∈ N `
nb(i) and i ∈ V`

nb,

Ã`
ij = ρ`i,2 ·

ni
n`i,1 + n`i,2

· Âij , ∀j ∈ N `
b (i) and i ∈ V`

nb,

Ã`
ii = ni · Âii, i ∈ V`

b\V`
nb,

Z
(`)
i∗ ≈

∑
j∈N (`)(i)

ÃijH
(`−1)
j∗ := Z̃

(`)
i∗ , ∀i ∈ V`

nb ∪ V`
b , (4)

H
(`)
i∗ = f(Z̃

(`)
i∗W

(`)), (5)

where ρ ∈ [0, 1]. Compared with (|N (i)|/|N `(i)|) · Âij in
Equation (2), Ãij adopts a different weights, ρ`i,1 and ρ`i,2, to
adjust the contribution of non-blocked and blocked nodes to
node i. In the following proposition, we prove that Z̃(`) is
an unbiased estimation of Z

(`)
i∗ , which makes our proposed

reweighted graph convolution theoretically sound. In experi-
ments, ρ is set to 0.5 for convenience.
Proposition 1. Suppose H(`−1) is given. If N `(i) is uni-
formly sampled from N (i), N `

b (i) is uniformly sampled from
N `(i) and ρ ∈ [0, 1], then Z̃

(`)
i∗ defined in Equation (4) is an

unbiased estimation of Z(`)
i∗ .

Proof. The proof can be found in the Appendix 1.
1The Appendix can be found in https://cs.nju.edu.cn/lwj/.

Algorithm 1 Sampling Algorithm

Require: Mini-batch of nodes Vin, the number of neighbors
sampled for each node sn, ratio of blocked neighbors per
node δ.

Ensure: {(V`
nb,V`

b , {(N `
nb(i),N `

b (i))}Ni=1)}L`=1

1: VL
nb = Vin, Vb = ∅

2: Sample in a top-down manner:
3: for ` = L : 1 do
4: for i ∈ V`

nb do
5: N `(i) = Sample(N (i), sn)
6: N `

b (i) = Block(N `(i), δ)
7: N `

nb(i) = N `(i)\N `
b (i)

8: end for
9: for i ∈ Vb do

10: N `(i) = N `(i) ∪ {i}
11: N `

b (i) = N `
b (i) ∪ {i}

12: end for
13: V`−1

nb =
⋃

i∈V`
nb
N `

nb(i)

14: V`−1
b =

⋃
i∈V`

nb
N `

b (i)

15: Vb = Vb ∪ V`−1
b

16: end for

3.3 Objective Function
Let W = {W(1), · · · ,W(L)} denote the learnable parame-
ters defined in Equation (5). Ŷ = H(L) denotes the output
of GNN models. For multi-class classification, f(·) in the
last layer denotes the softmax function, while it denotes the
sigmoid function for multi-label classification. The objective
function for BNS is formulated as follows:

min
W

∑
i∈V′

∑
c

−Yic log Ŷic + λ/2 ·
∑
`

‖W(`)‖2F , (6)

where λ is a hyper-parameter for the regularization term of
parametersW , V ′ denotes the set of nodes in training set.

3.4 Complexity Analysis
In this subsection, we compare the computation and mem-
ory complexity of different methods with those of BNS in a
mini-batch training step, which is summarized in Table 1. For
existing node-wise sampling methods NS [Hamilton et al.,
2017], VRGCN [Chen et al., 2018a] and MVS-GNN [Con-
g et al., 2020], they reduce the growth rate from s to sn,
where sn is much smaller than s. In particular, VRGCN and
MVS-GNN show that they can achieve comparable accura-
cy to NS with smaller sn. For layer-wise sampling method
LADIES [Zou et al., 2019] and subgraph sampling method
GraphSAINT [Zeng et al., 2020], they reduce the computa-
tion and memory complexity to the level that is linear with
the depth of network.

Although the above methods can achieve good perfor-
mance in terms of accuracy, time cost, and memory cost on
small-scale graphs (e.g., graphs with hundreds of thousand-
s of nodes), they are not efficient or even not applicable for
large-scale graphs (e.g., graphs with millions of nodes and
hundreds of millions of nodes). Some problems and draw-
backs existing in these methods are overlooked due to the

Method Computation complexity Memory complexity
Non-sampling [Kipf and Welling, 2017] O

(
sL−1(sBr +Br2)

)
O
(
Lr2 + sL ·Br

)
NS [Hamilton et al., 2017] O

(
sL−1
n · (snBr +Br2)

)
O
(
Lr2 + sLn ·Br

)
VRGCN [Chen et al., 2018a] O

(
sL−1
n · ((sn + s) ·Br +Br2)

)
O
(
Lr2 + sL−1

n · (s+ sn)Br
)

MVS-GNN [Cong et al., 2020] O
(
sL−1
n · ((sn + s) ·Br +Br2)

)
O
(
Lr2 + sL−1

n · (s+ sn)Br
)

LADIES [Zou et al., 2019] O
(
L · (sl/N)2 · ‖A‖0 + Lsl · r2) O

(
Lr2 + Lsl · r

)
GraphSAINT [Zeng et al., 2020] O

(
L · (sg/N)2 · ‖A‖0 + Lsg · r2) O

(
Lr2 + Lsg · r

)
BNS (ours) O

(
s̃L−1
n · (snBr + (δ/(1− δ) + 1) ·Br2)

)
O
(
Lr2 + s̃L−1

n · snBr
)

Table 1: Computation and memory complexity. s denotes the average number of neighbors per node in A. sn denotes the average number of
neighbors sampled for each node. s̃n = sn × (1− δ), where δ denotes the ratio of blocked nodes in BNS. sl denotes the average number of
nodes per layer in layer-wise sampling. sg denotes the average number of nodes per subgraph in subgraph sampling. B = |Vin| denotes the
mini-batch size of output layer. L is the number of layers in GNN models. r is the hidden dimension of networks.

lack of systematically experimental analysis on large-scale
graphs. For example, even with low computation complex-
ity, VRGCN, MVS-GNN and LADIES have a high time cost
of preparing data (including sampling) before each round of
mini-batch training. In addition, VRGCN brings a huge bur-
den to the memory for storing all nodes’ historical represen-
tations at each layer. MVS-GNN has the same complexi-
ty as the non-sampling method at the outer iteration, which
might make the training infeasible on large-scale graphs be-
cause of running out of graphics memory. GraphSAINT faces
the problem of sparse connection in subgraphs. Moreover,
GraphSAINT adopts the non-sampling strategy at the evalua-
tion and testing stage, which is also inefficient on large-scale
graphs.

Similar to existing node-wise sampling methods, BNS re-
duces the growth rate from s to a small s̃n, where s̃n denotes
the number of non-blocked neighbors per node. We will show
that with a small s̃n, BNS can achieve comparable accuracy
to NS with a large sn, while BNS has lower computation and
memory complexity. Moreover, BNS has a low time cost of
preparing data before each round of mini-batch training.

4 Experiments
In this section, we compare BNS with other baselines on five
node-classification datasets. BNS is implemented on the Py-
torch platform [Paszke et al., 2019] with Pytorch-Geometric
Library [Fey and Lenssen, 2019]. All experiments are run on
a NVIDIA TitanXP GPU server with 12 GB graphics memo-
ry.

4.1 Datasets

Ogbn-products, ogbn-papers100M and ogbn-proteins2 are
publicly available [Hu et al., 2020]. Ogbn-products is a large-
scale dataset with millions of nodes. Ogbn-papers100M is a
large-scale dataset with hundreds of millions of nodes. Ogbn-
proteins is a small-scale dataset with hundreds of thousands
of nodes. Amazon and Yelp in GraphSAINT, are also used
for evaluation. Due to space limitation, the information and
results on Amazon and Yelp are moved to the Appendix. The
statistics of datasets can be found in the Appendix.

2https://ogb.stanford.edu/docs/nodeprop/

4.2 Baselines and Settings
We compare BNS with VRGCN [Chen et al., 2018a],
LADIES [Zou et al., 2019] and GraphSAINT [Zeng et al.,
2020], which are the state-of-the-art methods with node-wise
sampling, layer-wise sampling and subgraph sampling, re-
spectively. Additionally, we compare BNS with the classi-
cal node-wise sampling method NS [Hamilton et al., 2017].
We do not compare BNS with MVS-GNN since MVS-GNN
adopts the non-sampling strategy for training at the outer it-
eration, which leads to the problem of running out of graph-
ics memory. Besides, comparisons with model simplifica-
tion methods are moved to the Appendix due to space limi-
tation. Since the original implementations of the above base-
lines cannot directly scale to the benchmark datasets in this
paper, we re-implement them according to the corresponding
authors’ codes. For a fair comparison, implementations of all
methods, including BNS, only differ in the sampling process.
For all methods, GNN model is instantiated with GraphSAGE
[Hamilton et al., 2017], since it can achieve good perfor-
mance on the benchmark datasets. Note that sampling strate-
gies and settings during inference are the same as those in the
training stage for all methods except for GraphSAINT.

The hyper-parameters r, L, T (maximum epoch), λ and
p (probability of dropout) are independent of sampling strate-
gies, and hence they are set to be the same for different sam-
pling strategies on one specific dataset. Empirically, r is set
to 128 on all datasets, L is set to 5 on both ogbn-proteins and
ogbn-products, and L is set to 3 on ogbn-papers100M. For T ,
it is set to 100 on both ogbn-products and ogbn-papers100M,
and set to 1,000 on ogbn-proteins. For λ and p, the values
of them are obtained by tuning with NS on the benchmark
datasets. On ogbn-product, λ = 5 × 10−6 and p = 0.1. On
ogbn-papers100M, λ = 5 × 10−7 and p = 0.1. On ogbn-
proteins, λ = 0 and p = 0. In BNS, we set ρ to 0.5 for con-
venience and do not tune it. Adam [Kingma and Ba, 2015]
is used to optimize the model and the learning rate η is set to
0.01. For all settings, experiments are run for 10 times with
different initialization each time, and the mean results of 10
runs are reported.

4.3 Evaluation Criteria
The ultimate goal of sampling strategies for GNNs is to ob-
tain high accuracy with a low time cost, not just to reduce
time and memory cost to extreme cases at the expense of sac-

0 2000 4000 6000 8000 10000

time (s)

76

78

80

82
T

e
s
t
A

c
c
u
ra

c
y
 (

%
)

ogbn-products - b =25

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 2000 4000 6000 8000 10000

time (s)

76

78

80

82

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

ogbn-products - b =35

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 2000 4000 6000 8000 10000

time (s)

76

78

80

82

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

ogbn-products - b =45

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 2000 4000 6000 8000 10000

time (s)

76

78

80

82

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

ogbn-products - minimum b

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

(a) ogbn-products.

0 0.5 1 1.5 2

time (s) 10
4

60

61

62

63

64

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

ogbn-papers100M - b =25

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 0.5 1 1.5 2

time (s) 10
4

60

61

62

63

64

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

ogbn-papers100M - b =35

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 0.5 1 1.5 2

time (s) 10
4

60

61

62

63

64

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

ogbn-papers100M - b =45

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 0.5 1 1.5 2

time (s) 10
4

60

61

62

63

64

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

ogbn-papers100M - minimum b

BNS(ours)

NS

VRGCN

LADIES

(b) ogbn-papers100M.

Figure 2: Test accuracy curves on ogbn-products and ogbn-papers100M. Methods that need more than one day to obtain the curves are
omitted in the figures. b′ = |V ′|/B, where |V ′| denotes the number of nodes in training data and B is batch size. At each row, the first
three figures present the results of the first experimental setting in Section 4.3. The last figure presents the results of the second experimental
setting.

Methods ogbn-products ogbn-papers100M
Accuracy (%) ↑ Time (s) ↓ T1+T2 (s) Accuracy (%) ↑ Time (s) ↓ T1+T2 (s)

NS 78.64 ± 0.17 5.5× 103 4.5× 103 + 9.6× 102 63.61 ± 0.13 2.5× 104 8.0× 103 + 1.7× 104

VRGCN 77.07 ± 0.49 1.2× 104 1.1× 104 + 1.5× 103 63.34 ± 0.12 2.2× 104 7.0× 103 + 1.5× 104

LADIES 78.96 ± 0.50 4.7× 103 4.5× 103 + 2.5× 102 63.25 ± 0.21 2.5× 104 1.2× 104 + 1.3× 104

GraphSAINT 78.95 ± 0.41 7.1× 103 4.5× 103 + 2.6× 103 61.60 ± 0.12 2.1× 104 8.0× 103 + 1.3× 104

BNS (ours) 80.14 ± 0.27 9.1× 102 7.3× 102 + 1.8× 102 63.88 ± 0.12 1.2× 104 4.3× 103 + 7.7× 103

Table 2: Results on ogbn-products and ogbn-papers100M. Boldface letters denote the best results. Time presented in tables denotes the total
training time of one run. “T1” refers to the time cost of preparing data. “T2” refers to the time cost of performing forward and backward
propagation. The results in tables are obtained under the second experimental setting in the Section 4.3.

rificing accuracy. In most cases, reducing memory can also
reduce the time cost since GNN model can perform training
with a larger batch size when the graphics memory cost is
lower. Hence, we omit the comparison of memory cost in
experiments. In a nutshell, the accuracy of GNN model and
time cost during training are presented to evaluate the perfor-
mance of different methods.

One reasonable way to evaluate the performance of differ-
ent methods is to compare time cost when achieving the same
accuracy. Since batch size has an important impact on time
cost and accuracy, we design two kinds of experiments for
fair comparison:

• The first experimental setting: On each dataset, for d-
ifferent methods, we train GNN model with the same
batch size. All methods are run with the best setting that
can achieve the best accuracy in this case.

• The second experimental setting: On each dataset, for
different methods, we train GNN model with the maxi-
mum batch size that can achieve the best accuracy. All
methods are run with the best setting that can achieve the
best accuracy.

Detailed settings of each method can be found in the Ap-
pendix.

4.4 Results
Results on ogbn-products and ogbn-papers100M are summa-
rized in Figure 2 and Table 2, from which we can draw the
following conclusions. Firstly, when achieving the same ac-
curacy under different settings, BNS is faster than all other
methods. For example, from Figure 2(a), we can see that BNS
is approximately 4× ∼ 5× faster than GraphSAINT (second-
best) when achieving the accuracy of 80% on ogbn-products.
From Figure 2(b), we can see that BNS is approximately 2×
faster than NS (second-best) when achieving the accuracy of
63.5% on ogbn-papers100M. Secondly, compared with other
methods, BNS can achieve the best performance in accura-
cy with the minimum time cost. This point can be drawn
from Table 2, which is consistent with the results in Fig-
ure 2. Thirdly, VRGCN and LADIES have a high time cost
in preparing data, which is even higher than the time cost in
performing forward and backward propagation. Finally, from
Table 2, we observe an interesting phenomenon, i.e., the ac-
curacy of BNS does not decrease compared to that of NS, and
is even higher than that of NS. This phenomenon can be ex-
plained by the observations in JK-Net [Xu et al., 2018], i.e., it
is important to enhance the influence of local neighborhoods
on the central nodes; otherwise the local information of the
central nodes in the input graphs will be washed out in a few

0 0.5 1 1.5 2

time (s) 10
4

74

76

78

80

T
e
s
t
R

O
C

-A
U

C
 (

%
)

ogbn-proteins - b =25

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 0.5 1 1.5 2

time (s) 10
4

74

76

78

80

T
e
s
t
R

O
C

-A
U

C
 (

%
)

ogbn-proteins - b =35

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 0.5 1 1.5 2

time (s) 10
4

74

76

78

80

T
e
s
t
R

O
C

-A
U

C
 (

%
)

ogbn-proteins - b =45

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 0.5 1 1.5 2

time (s) 10
4

74

76

78

80

T
e
s
t
R

O
C

-A
U

C
 (

%
)

ogbn-proteins - minimum b

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

Figure 3: Test ROC-AUC curves on ogbn-proteins.

Method Accuracy (%) ↑ Time (s) ↓ T1+T2 (s)
NS 78.84 ± 0.32 1.1× 104 3.6× 103 + 7.4× 103

VRGCN 78.26 ± 0.64 1.9× 104 8.0× 103 + 1.1× 104

LADIES 79.49 ± 0.37 1.9× 104 1.9× 104 + 3.0× 102

GraphSAINT 78.73 ± 0.45 3.3× 104 1.1× 104 + 2.2× 104

BNS (ours) 79.60± 0.29 9.3× 103 8.6× 103 + 7.4× 102

Table 3: Results on ogbn-proteins.

steps. We can see that the stochastically blocking policy is
helpful for BNS to preserve local information around central
nodes.

Results on ogbn-proteins, a relative small graph, are sum-
marized in Figure 3 and Table 3, from which we can draw
the following conclusions. Firstly, BNS is faster than al-
l other methods when achieving the same accuracy under
different settings. However, the gap of the time cost for
achieving the same accuracy between BNS and other meth-
ods is small. The main reason is that neighboring expan-
sions can easily cover the entire graph within a few layer-
s or steps on small-scale graphs. Therefore, these methods
have the same order of computation and memory complexity
O(Nsr +Nr2). Secondly, BNS can achieve the best perfor-
mance in terms of accuracy with the fastest speed. This point
can be drawn from Table 3, which is consistent with results
in Figure 3. Thirdly, once again, we observe that LADIES
has a high time cost in preparing data. Finally, we observe
that GraphSAINT (non-sampling strategy) achieves lower ac-
curacy than NS, LADIES and BNS. This may be caused
by the over-smoothing problem of GNNs [Li et al., 2018;
Xu et al., 2018; Oono and Suzuki, 2020]. This observation,
in turn, shows that the stochasticity introduced by sampling
can alleviate the over-smoothing problem of GNNs.

Summary. First, on large-scale graphs, BNS is 2× ∼ 5×
faster than existing state-of-the-art methods when achieving
the same accuracy. Compared with BNS, other methods have
some deficiencies or limitations. For example, NS needs a
large number of sn to achieve high accuracy. VRGCN and
LADIES have a high time cost of preparing data, which are
more expensive than performing forward and backward prop-
agation. Second, even on the small-scale graph, BNS demon-
strates the advantage of low time cost. Third, compared with
other methods, BNS can achieve the best performance in ac-
curacy with the minimum time cost.

4.5 Ablation Study
We study the effectiveness of reweighted policy by setting
ρ`i,1 = 1 and ρ`i,2 = 1 in Equation (3). With ρ`i,1 = 1 and

ρ`i,2 = 1 in Equation (3), Equation (5) is a plain Monte-Carlo
approximation of Equation (2). The results are presented in
Table 4. From Table 4, we can conclude that reweighted poli-
cy enhances the ability of BNS in utilizing the information of
blocked neighbors.

Methods
Accuracy (%) or ROC-AUC (%)

ogbn- ogbn- ogbn-
products papers100M proteins

BNS w/o rew 79.12 ± 0.19 62.54 ± 0.14 79.40 ± 0.21
BNS 80.14 ± 0.27 63.88 ± 0.12 79.60 ± 0.29

Table 4: Ablation study on reweighted policy. ‘w/o rew’ means BNS
runs without reweighted policy.

5 Conclusions
On large-scale graphs (e.g., graphs with hundreds of million-
s of nodes), existing sampling strategies have deficiencies or
limitations in accuracy, time cost, or memory cost. Hence,
designing an effective sampling strategy for efficient training
of GNNs on large-scale graphs is still challenging. In this pa-
per, we propose a novel neighbor sampling strategy, dubbed
blocking-based neighbor sampling (BNS), for training GNNs
on large-scale graphs. The main idea is to adopt a policy to
stochastically block the ongoing expansion of neighbors, by
which computation and memory complexity can be signifi-
cantly reduced. Furthermore, reweighted graph convolution
is proposed to adjust the contribution of blocked and non-
blocked neighbors to central nodes. Extensive experiments
on large-scale graphs show that, when achieving the same ac-
curacy, BNS is 2× ∼ 5× faster than state-of-the-art method-
s. Experiments on the small-scale graph also demonstrate the
advantage of BNS in terms of time cost.

Acknowledgments
This work is supported by the NSFC-NRF Joint Re-
search Project (No. 61861146001) and NSFC Project (No.
61921006).

References
[Bruna et al., 2014] Joan Bruna, Wojciech Zaremba, Arthur Szlam,

and Yann LeCun. Spectral networks and locally connected net-
works on graphs. In International Conference on Learning Rep-
resentations, 2014.

[Chen et al., 2018a] Jianfei Chen, Jun Zhu, and Le Song. Stochas-
tic training of graph convolutional networks with variance reduc-
tion. In International Conference on Machine Learning, 2018.

[Chen et al., 2018b] Jie Chen, Tengfei Ma, and Cao Xiao. FastGC-
N: fast learning with graph convolutional networks via impor-
tance sampling. In International Conference on Learning Repre-
sentations, 2018.

[Chen et al., 2020a] Lei Chen, Zhengdao Chen, and Joan Bruna.
On graph neural networks versus graph-augmented MLPs. CoR-
R, abs/2010.15116, 2020.

[Chen et al., 2020b] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang
Li, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen. Scalable graph
neural networks via bidirectional propagation. In Advances in
Neural Information Processing Systems, 2020.

[Chen et al., 2020c] Ming Chen, Zhewei Wei, Zengfeng Huang,
Bolin Ding, and Yaliang Li. Simple and deep graph convolution-
al networks. In International Conference on Machine Learning,
2020.

[Chiang et al., 2019] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang
Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: an efficient
algorithm for training deep and large graph convolutional net-
works. In ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 2019.

[Cong et al., 2020] Weilin Cong, Rana Forsati, Mahmut T. Kan-
demir, and Mehrdad Mahdavi. Minimal variance sampling with
provable guarantees for fast training of graph neural networks. In
ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, 2020.

[Fey and Lenssen, 2019] Matthias Fey and Jan E. Lenssen. Fast
graph representation learning with PyTorch Geometric. In In-
ternational Conference on Learning Representations Workshop
on Representation Learning on Graphs and Manifolds, 2019.

[Gori et al., 2005] M. Gori, G. Monfardini, and F. Scarselli. A new
model for learning in graph domains. In IEEE International Joint
Conference on Neural Networks, 2005.

[Hamilton et al., 2017] William L. Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large graphs. In
Adavances in Neural Information Processing Systems, 2017.

[Hu et al., 2020] Weihua Hu, Matthias Fey, Marinka Zitnik, Yux-
iao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: datasets for machine learn-
ing on graphs. In Advances in Neural Information Processing
Systems, 2020.

[Huang et al., 2018] Wen-bing Huang, Tong Zhang, Yu Rong, and
Junzhou Huang. Adaptive sampling towards fast graph represen-
tation learning. In Adavances in Neural Information Processing
Systems, 2018.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba. Adam:
a method for stochastic optimization. In International Confer-
ence on Learning Representations, 2015.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling. Semi-
supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

[Klicpera et al., 2019] Johannes Klicpera, Stefan Weißenberger,
and Stephan Günnemann. Diffusion improves graph learning.
In Adavances in Neural Information Processing Systems, 2019.

[Li et al., 2018] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deep-
er insights into graph convolutional networks for semi-supervised
learning. In AAAI Conference on Artificial Intelligence, 2018.

[Li et al., 2019] Guohao Li, Matthias Müller, Ali K. Thabet, and
Bernard Ghanem. DeepGCNs: can GCNs go as deep as C-
NNs? In IEEE/CVF International Conference on Computer Vi-
sion, 2019.

[Oono and Suzuki, 2020] Kenta Oono and Taiji Suzuki. Graph neu-
ral networks exponentially lose expressive power for node clas-
sification. In International Conference on Learning Representa-
tions, 2020.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Köpf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: an impera-
tive style, high-performance deep learning library. In Adavances
in Neural Information Processing Systems, 2019.

[Velickovic et al., 2018] Petar Velickovic, Guillem Cucurull, Aran-
txa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learn-
ing Representations, 2018.

[Verma and Zhang, 2020] Saurabh Verma and Zhi-Li Zhang. To-
wards deeper graph neural networks. In ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining,
2020.

[Wu et al., 2019] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang,
Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. Simpli-
fying graph convolutional networks. In International Conference
on Machine Learning, 2019.

[Xu et al., 2018] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohi-
ro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. Rep-
resentation learning on graphs with jumping knowledge network-
s. In International Conference on Machine Learning, 2018.

[Zeng et al., 2020] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivas-
tava, Rajgopal Kannan, and Viktor K. Prasanna. GraphSAINT:
graph sampling based inductive learning method. In Internation-
al Conference on Learning Representations, 2020.

[Zou et al., 2019] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang,
Yizhou Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional net-
works. In Adavances in Neural Information Processing Systems,
2019.

A Proofs
Proposition 1. Suppose H(`−1) is given. If N `(i) is uniformly sampled from N (i), N `

b (i) is uniformly sampled from N `(i)

and ρ ∈ [0, 1], then Z̃
(`)
i∗ defined in Equation (4) is an unbiased estimator of Z(`)

i∗ .

Proof. Case 1. If i ∈ V`
b\V`

nb, then we have

E[Z̃(`)
i∗] = E[|N (i)| · ÂiiH

(`−1)
i∗] = Z

(`)
i∗ .

Case 2. If i ∈ V`
nb, let N `

nb(i) denote the set of non-blocked neighbors of node i at layer `. Then we have

E[Z̃(`)
i∗] = E

[∑
j∈N `

nb(i)

ÃijH
(`−1)
j∗ +

∑
t∈N `

b (i)

ÃijH
(`−1)
t∗

]

= E
[∑
j∈N `

nb(i)

ÃijH
(`−1)
j∗

]
+ E

[∑
t∈N `

b (i)

ÃijH
(`−1)
t∗

]
.

For E
[∑

j∈N `
nb(i)

ÃijH
(`−1)
j∗

]
, we have

E
[∑
j∈N `

nb(i)

ÃijH
(`−1)
j∗

]
= E

[∑
j∈N `

nb(i)

ρ`i,1 ·
|N (i)|
|N `(i)|

· ÂijH
(`−1)
j∗

]

= E
[∑
j∈N `

nb(i)

ρ · |N (i)|
|N `

nb(i)|
ÂijH

(`−1)
j∗

]
= ρZ

(`)
i∗ .

For E
[∑

j∈N `
b (i)

ÃijH
(`−1)
j∗

]
, we have

E
[∑
j∈N `

b (i)

ÃijH
(`−1)
j∗

]
= E

[∑
j∈N `

b (i)

ρ`i,2 ·
|N (i)|
|N `(i)|

· ÂijH
(`−1)
j∗

]

= E
[∑
j∈N `

b (i)

(1− ρ) · |N (i)|
|N `

b (i)|
ÂijH

(`−1)
j∗

]
= (1− ρ)Z(`)

i∗ .

Summing up the above two parts, we have E[Z̃(`)
i∗] = Z

(`)
i∗ . Combining case 1 and case 2 ends the proof.

B Experimental Settings
B.1 Statistics of Datasets
The statistics of datasets are presented in Table B.1.

Datasets ogbn-products ogbn-papers100M ogbn-proteins
#Nodes 2,449,029 111,059,956 132,534
#Edges 61,859,140 1,615,685,872 39,561,252
Features/Node 100 128 8
#Classes 47 172 112
#Training Nodes 196,615 1,207,179 86,619
#Validation Nodes 39,323 125,265 21,236
#Test Nodes 2,213,091 214,338 24,679
Task Type Multi-class Multi-class Multi-label
Metric Accuracy Accuracy ROC-AUC

Table B.1: Statistics of benchmark datasets.

B.2 Detailed Experimental Settings
Detailed experimental settings, mainly including hyper-parameters for reproducing results, are presented in Table B.2, Table
B.3 and Table B.4.

Dataset L r T λ p η
ogbn-products 5 128 100 5× 10−6 0.1 0.01
ogbn-papers100M 3 128 100 5× 10−7 0.1 0.01
ogbn-proteins 5 128 1000 0 0 0.01

Table B.2: Hyper-parameters that are independent of different methods. L is the layer number. r is the feature dimension of hidden layer. T
is the maximum epoch. λ is the hyper-parameter of the regularization term of parameters. p is the probability of dropout. η is the learning
rate of Adam optimizer.

Dataset NS VRGCN LADIES GraphSAINT BNS
ogbn-products sn = 5 - k = 7 w = 50 s̃n = 3, δ = 1/2
ogbn-papers100M sn = 10 sn = 6 k = 15 w = 20 s̃n = 6, δ = 2/3
ogbn-proteins sn = 9 sn = 3 k = 0.5 - s̃n = 4, δ = 2/3

Table B.3: Method-dependent hyper-parameters for generating test accuracy curves of b′ = 25, 35, 45 in Figure 2 and Figure 3. For each
method and each dataset, the settings of different b′ are the same.

Dataset NS VRGCN LADIES GraphSAINT BNS
ogbn-products sn = 5, b′ = 15 sn = 2, b′ = 15 k = 7, b′ = 15 w = 50, b′ = 15 s̃n = 3, δ = 1/2, b′ = 5
ogbn-papers100M sn = 15, b′ = 50 sn = 6, b′ = 30 k = 15, b′ = 15 w = 50, b′ = 70 s̃n = 6, δ = 2/3, b′ = 25
ogbn-proteins sn = 9, b′ = 8 sn = 3, b′ = 8 k = 0.5, b′ = 8 full graph, b′ = 1 s̃n = 4, δ = 2/3, b′ = 8

Table B.4: Method-dependent hyper-parameters for generating test accuracy curves of maximum b′ in Figure 2 and Figure 3. Hyper-
parameters in this table are the same as those for generating results in Table 3 and Table 4.

C Experiments on Amazon and Yelp
To have a fair comparison with GraphSAINT [Zeng et al., 2020], we conduct experiments on Amazon and Yelp. However, our
experimental results show that differences in accuracy and time cost between different methods are small. For example, NS
[Hamilton et al., 2017] only needs to sample two neighbors for each node to achieve the best performance in accuracy and time
cost. Hence, Amazon and Yelp are not suitable for analyzing the differences between different sampling strategies.

C.1 Datasets and Settings
Datasets. Amazon has millions of nodes. Yelp has hundreds of thousands of nodes. Details of Amazon and Yelp can refer to
[Zeng et al., 2020].
Settings All hyper-parameters independent of sampling strategies are set the same as in [Zeng et al., 2020]. For all sampling
strategies, they are evaluated with the same GNN model as GraphSAINT does in [Zeng et al., 2020]. Other detailed settings
are presented in Table C.1.

Dataset NS VRGCN LADIES GraphSAINT BNS
Yelp sn = 2 2 k = 1 w = 2 s̃n = 1, δ = 1/2
Amazon sn = 2 - k = 1 w = 2 s̃n = 1, δ = 1/2

Table C.1: Method-dependent hyper-parameters for generating test accuracy curves of b′ = 25, 35, 45 in Figure C.1. For each method and
each dataset, settings of different b′ are the same.

Dataset NS VRGCN LADIES GraphSAINT BNS
Yelp sn = 2, b′ = 25 sn = 2, b′ = 25 k = 1, b′ = 25 w = 2, b′ = 25 s̃n = 1, δ = 1/2, b′ = 25
Amazon sn = 2, b′ = 25 sn = 2, b′ = 25 k = 1, b′ = 25 w = 2, b′ = 25 s̃n = 1, δ = 1/2, b′ = 25

Table C.2: Method-dependent hyper-parameters for generating test accuracy curves of maximum b′ in Figure C.1. Hyper-parameters in this
table are the same as those for generating results in Table C.3.

C.2 Results on Amazon and Yelp
Results on Yelp and Amazon are summarized in Figure C.1 and Table C.3. On Yelp, we can see that the gap between the
time cost of different methods is small when achieving the same accuracy. On Amazon, we can see that NS and BNS are
approximately 2× faster than GraphSAINT and LADIES when achieving the same accuracy. But the gap between NS and
BNS is small.

0 1000 2000 3000 4000

time (s)

62

63

64

65

F
1

-m
ic

ro
 (

%
)

Yelp - b =25

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 1000 2000 3000 4000

time (s)

62

63

64

65

F
1

-m
ic

ro
 (

%
)

Yelp - b =35

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 1000 2000 3000 4000

time (s)

62

63

64

65

F
1

-m
ic

ro
 (

%
)

Yelp - b =45

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

0 1000 2000 3000 4000

time (s)

62

63

64

65

F
1

-m
ic

ro
 (

%
)

Yelp - minimum b

BNS(ours)

NS

VRGCN

LADIES

GraphSAINT

(a) Yelp.

0 2000 4000 6000 8000 10000

time (s)

74

76

78

80

F
1

-m
ic

ro
 (

%
)

Amazon - b =25

BNS(ours)

NS

LADIES

GraphSAINT

0 2000 4000 6000 8000 10000

time (s)

74

76

78

80
F

1
-m

ic
ro

 (
%

)

Amazon - b =35

BNS(ours)

NS

LADIES

GraphSAINT

0 2000 4000 6000 8000 10000

time (s)

74

76

78

80

F
1

-m
ic

ro
 (

%
)

Amazon - b =45

BNS(ours)

NS

LADIES

GraphSAINT

0 2000 4000 6000 8000 10000

time (s)

74

76

78

80

F
1

-m
ic

ro
 (

%
)

Amazon - minimum b

BNS(ours)

NS

LADIES

GraphSAINT

(b) Amazon.
Figure C.1: Test accuracy curves on Yelp and Amazon. Methods that need more than one day to obtain the curves are omitted in the figures.
b′ = |V ′|/b, where |V ′| denotes the number of nodes in training data and b is batch size. At each row, the first three figures present the results
of the first experimental setting in subsection Evaluation Criteria. The last figure presents the results of the second experimental setting.

Methods Yelp Amazon
F1-micro (%) ↑ Time (s) ↓ T1+T2 (s) F1-micro (%) ↑ Time (s) ↓ T1+T2 (s)

NS 65.39 ± 0.05 5.1× 103 4.0× 103 + 1.1× 103 80.89 ± 0.08 1.1× 104 9.0× 103 + 2.1× 103

VRGCN 62.58 ± 0.42 7.9× 103 5.1× 103 + 2.8× 103 - - -
LADIES 65.36 ± 0.03 5.3× 103 4.6× 103 + 7.2× 102 81.05 ± 0.08 2.7× 104 2.5× 104 + 2.4× 103

GraphSAINT 65.46 ± 0.05 4.9× 103 3.8× 103 + 1.1× 103 80.94 ± 0.07 2.3× 104 1.7× 104 + 5.9× 103

BNS (ours) 65.34 ± 0.04 4.5× 103 3.5× 103 + 9.6× 102 80.91 ± 0.08 9.0× 103 7.1× 103 + 1.9× 103

Table C.3: Results on Yelp and Amazon. Time presented in tables indicates the total training time of one run. “T1” refers to the time cost of
preparing data. “T2” refers to the time cost of performing forward and backward propagation. The results in tables are obtained under the
second experimental setting in the subsection Evaluation Criteria.

D Comparisons with Model Simplification Methods
Model simplification methods solve the exponential increase problem of GNNs by simplifying the GNN model, which is
different from sampling-based methods. Although model simplification methods are efficient in training, as stated in [Chen et
al., 2020], it is still an open question whether simplified GNNs’ expressive power can match that of deep GNNs. Therefore, we
only conduct comparisons with SGC [Wu et al., 2019], and we leave the extensive evaluations on model simplification methods
in future works.

The results are summarized in Table D.1. From Table D.1, we can see that SGC performs worse on ogbn-products, ogbn-
proteins, Yelp and Amazon.

Methods ogbn-products ogbn-papers100M ogbn-proteins Yelp Amazon
Accuracy (%) ↑ Accuracy (%) ↑ ROC-AUC (%) ↑ F1-micro (%) ↑ F1-micro (%) ↑

SGC 78.18 ± 0.31 63.29 ± 0.19 72.45 ± 0.26 40.53 ± 0.04 38.80 ± 0.05
BNS (ours) 80.14 ± 0.27 63.88 ± 0.12 79.60 ± 0.29 65.34 ± 0.04 80.91 ± 0.08

Table D.1: Comparisons with SGC.

References
[Chen et al., 2020] Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus graph-augmented MLPs. CoRR, ab-

s/2010.15116, 2020.
[Hamilton et al., 2017] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Ada-

vances in Neural Information Processing Systems, 2017.
[Wu et al., 2019] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. Simplifying graph

convolutional networks. In International Conference on Machine Learning, 2019.
[Zeng et al., 2020] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. GraphSAINT: graph

sampling based inductive learning method. In International Conference on Learning Representations, 2020.

	Introduction
	Notations and Problem Definition
	Notations
	Problem Definition

	Blocking-based Neighbor Sampling
	Sampling Algorithm
	Reweighted Graph Convolution
	Objective Function
	Complexity Analysis

	Experiments
	Datasets
	Baselines and Settings
	Evaluation Criteria
	Results
	Ablation Study

	Conclusions
	BNS-IJCAI2021-appendix.pdf
	Proofs
	Experimental Settings
	Statistics of Datasets
	Detailed Experimental Settings

	Experiments on Amazon and Yelp
	Datasets and Settings
	Results on Amazon and Yelp

	Comparisons with Model Simplification Methods

