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Hardware Computation Graph for DNN Accelerator
Design Automation without Inter-PU Templates

Jun Li , Wei Wang and Wu-Jun Li

Abstract—Existing deep neural network (DNN) accelerator
design automation (ADA) methods adopt architecture templates
to predetermine parts of design choices and then explore the
remaining design choices beyond templates. Based on the archi-
tecture hierarchy at the processing unit (PU) level, these templates
can be classified into intra-PU templates and inter-PU templates.
Since templates limit the flexibility of ADA, designing effective
ADA methods without templates has become an important
research topic. Although there have appeared some works to
enhance the flexibility of ADA by removing intra-PU templates,
to the best of our knowledge no existing works have studied ADA
methods without inter-PU templates. ADA with predetermined
inter-PU templates is typically inefficient in terms of resource
utilization, especially for DNNs with complex topology. In this
paper, we propose a novel method, called hardware computation
graph (HCG), for ADA without inter-PU templates. In HCG,
a novel inter-PU architecture exploration strategy is proposed
to optimize on-chip memory utilization. This strategy mainly
depends on an appearing-frequency guided pruning method and
an appearing-frequency first generation method. Experiments
show that HCG can achieve competitive latency while using only
13% ∼ 90% of on-chip memory, compared with existing state-
of-the-art ADA methods.

Index Terms—DNN Accelerator; FPGA; Accelerator Design
Automation; Hardware Computation Graph.

I. INTRODUCTION

Due to their high flexibility and low energy consumption,
Field Programmable Gate Arrays (FPGAs) have become one
of the most popular platforms for deploying deep neural net-
works (DNNs). However, manual design of DNN accelerators
for FPGAs suffers from significant amount of engineering
effort and huge space of design choices. Hence, many DNN
accelerator design automation (ADA) methods [2, 3, 4, 5, 6, 7,
8, 9] have been proposed to automate this process. In general,
the effectiveness of ADA is determined by two main factors:
an accelerator representation that abstracts the architecture
into a set of explorable parameters and an exploration strategy
that iteratively explores the parameters to find the optimal
architecture.

Given the huge design choice space in the accelerator
design process, existing ADA methods utilize architecture
templates to predetermine part of design choices and then
explore the remaining design options beyond those templates.
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Based on the architecture hierarchy at the processing unit
(PU) level, these templates can be categorized into intra-
PU and inter-PU templates. Intra-PU templates predetermine
some design choices in one single PU, such as the dataflow
style and processing parallelism in the PU. Inter-PU templates
predetermine some design choices among PUs, such as the
total number of PUs, the interconnection and the coopera-
tion method between two specific PUs. Since templates are
predetermined manually and subsequently limit the flexibility
of ADA, designing effective ADA methods that do not rely
on templates has emerged as a significant area of research.
Works in [8, 9, 10, 11] propose to remove intra-PU templates
and develop more expressive representations for DNN accel-
erators. For example, NAAS [10] removes intra-PU templates
with the modeling of the connectivity between multipliers,
which enhances the flexibility of ADA. However, removing
of inter-PU templates is less discussed, and almost all existing
works adopt inter-PU templates for ADA. For example, works
in [8, 9, 11, 12, 13, 14] utilize layer sequential template which
schedules and computes the DNN layer by layer on the chip.
Works in [6, 7, 15, 16, 17, 18] adopt layer pipelined template
which maps the entire DNN model over the accelerator. Due
to the limited flexibility caused by predetermined inter-PU
templates, ADA methods that rely on these templates are
often inefficient in terms of resource utilization. Moreover,
this problem becomes worse with the widespread adoption of
multi-branch structure [19] and skip connection structure [20],
because these structures make the topology of DNN more and
more complex.

In order to improve the flexibility of ADA and resource
utilization, this paper focuses on designing ADA methods
without inter-PU templates. The contributions of this paper
are outlined as follows:

• We first propose a novel accelerator representation,
called hardware computation graph (HCG)1, to abstract
the inter-PU architecture. By representing each PU as a
node and the interconnection between PUs as edges, HCG
provides a principled tool to formulate an explorable
space of design choices at the inter-PU architecture level.

• Based on the HCG representation, we further propose
an inter-PU architecture exploration strategy to optimize
the on-chip memory utilization. The exploration strategy

1In this paper, we use HCG to denote both our ADA method and the
inter-PU architecture representation (accelerator representation). The specific
meaning of each occurrence can be easily identified from the context. In
particular, if there is a ‘method’ behind HCG, like ‘HCG method’, this case of
HCG denotes our ADA method. If there is a ‘representation’ behind HCG, like
‘HCG representation’, this case of HCG denotes the accelerator representation.
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mainly depends on an appearing-frequency guided prun-
ing method and an appearing-frequency first generation
method. Since HCG does not put any constraints on
the intra-PU architecture design, it can be seamlessly
integrated with existing works on intra-PU level of opti-
mization, no matter whether with intra-PU templates or
without intra-PU templates.

• To the best of our knowledge, HCG2 is the first work
to complete ADA without inter-PU templates. Further-
more, due to the flexibility resulted from removing inter-
PU templates, HCG is also the first work to support
irregularly connected DNNs, such as RandWire [21] and
AmoebaNet [22], in ADA.

• To quantitatively evaluate the effectiveness of HCG,
we conduct comprehensive experiments on widely used
DNNs with complex topology which can be classified
into regularly connected DNNs and irregularly connected
DNNs according to the regularity of connection between
layers. Experimental results show that for regularly con-
nected DNNs, HCG can achieve competitive speed (la-
tency) while using 13% ∼ 90% of on-chip memory re-
quired by existing state-of-the-art (SOTA) ADA methods.
Since there have not existed ADA works considering
irregularly connected DNNs, we compare HCG with a
manually designed accelerator [23] for RandWire which
is a representative irregularly connected DNN. The results
show that HCG is 1.3× faster while using 2.5× fewer on-
chip memory compared with the method in [23].

The remainder of this paper is organized as follows. Section
II lists some works of two related research areas of this
paper, including existing ADA methods and structural pruning
methods for DNNs. Section III gives an overview introduction
of the workflow of our HCG system. Section IV introduces
HCG representation, which is the basis of the proposed inter-
PU architecture exploration strategy. Section V introduces the
details of HCG generation, which mainly depends on the
proposed inter-PU architecture exploration strategy. Section VI
introduces the implementation details of HCG, such as on-chip
memory usage, off-chip memory usage and so on. Section VII
comprehensively evaluates the effectiveness of HCG. Finally,
Section VIII concludes this paper.

II. RELATED WORKS

A. DNN Accelerator Design Automation

Due to the significant human effort required for manually
designing DNN accelerators, ADA [3, 6, 7, 8, 9, 11, 12,
13, 15, 16, 17, 24, 25, 26] has been proposed to automate
the designing process. To boost the flexibility of ADA, some
methods, including AMOS [8], Gemmini [12], TENET [9],
NAAS [10] and Interstellar [14], propose to remove intra-
PU templates. However, almost all existing ADA methods,
including LCMM [3], Clound-DNN [16], Multi-FPGA [17]
and many others [6, 7, 8, 9, 11, 12, 13, 15, 26], adopt
inter-PU templates to predetermine design choices at inter-
PU architecture level. Inter-PU templates not only limit the

2The preliminary version of HCG appears in the conference version [1] of
this paper.

flexibility of ADA but also cause inefficiency in terms of
resource utilization, which motivates the work in this paper.

B. DNN Structural Pruning

DNN structural pruning has been proven to be successful
in enhancing memory utilization. Unlike unstructured pruning,
structural pruning is favored for its convenience in accelerating
DNNs, since it is more compatible with modern deployment
platforms. In practice, it structurally removes those “unim-
portant” filters. Hence, one of the key problems of struc-
tural pruning is the filter importance evaluation. To this end,
works emphasizing on the importance evaluation have been
proposed [27, 28, 29]. For example, [27] proposes a pruning
method based on L1-Norm importance evaluation. FPGM
[28] proposes a novel criterion named geometric median as
the pruning importance. These works are orthogonal to our
design, since our design does not put any constraints on the
specific importance evaluation.

There also exist several works focusing on the joint op-
timization of pruning technique and accelerator on FPGA
[30, 31, 32, 33, 34]. For example, [30] accelerates the DNN
for semantic segmentation on FPGA. Work in [34] proposes to
jointly optimize both the hardware and pruning scheme. How-
ever, these works mainly target at those manually designed
accelerators, which are not the focus of this paper.

III. SYSTEM OVERVIEW

Figure 1 illustrates the workflow of HCG. As illustrated,
HCG consists of three steps: software computation graph
(SCG) generation, HCG generation and code generation.

SCG generation includes two sub-steps: model parsing and
topology regularization. Firstly, the model parsing step con-
verts DNN model descriptions, which are defined by external
protocols such as Caffe and ONNX, into the SCG format that
is utilized within the system. HCG supports almost all kinds
of commonly used layers, including depth-wise convolution,
convolution, fully connected layer, pooling (average pooling,
max pooling and global pooling), element-wise addition, con-
catenation and non-linear activation functions such as ReLU.
Figure 1(a) illustrates a simple example of model parsing.
Secondly, topology regularization is conducted to unify the
layers with multiple inputs or outputs. These layers are regu-
larized to multiple nodes with only two inputs or outputs in
SCG. Figure 1(b) shows the regularized SCG topology derived
from Figure 1(a). The function of Distrib nodes D1 and D2 in
Figure 1(b) is to distribute the input data to two output ports.

HCG generation mainly depends on the proposed inter-PU
architecture exploration strategy, which consists of three sub-
steps: pre-pruning, PU list exploration and interconnection
exploration. Firstly, the pre-pruning sub-step prunes the SCG
with the appearing-frequency guided pruning method (Sec-
tion V-A). Secondly, the PU list exploration sub-step generates
the PU list tailored to the target FPGA and given DNN
(Section V-B). Since each node of HCG is a PU, this sub-
step essentially generates the nodes of HCG with a two-stage
process. Stage 1 generates a list of basic PUs (i.e., HCG nodes)
with the appearing-frequency first generation method. Stage 2
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Fig. 1. Workflow of our HCG system. (a) an illustrative example SCG, which includes three branches; (b) regularized SCG derived from (a), where the
nodes “D1” and “D2” denote distribution layers, and the nodes “E4”, “E4.1” and “E4.2” denote element-wise addition; (c) the sub-network partition and
PU allocation scheme derived from Interconnection Exploration step. From the figure, the given SCG is partitioned into two sub-networks. We use different
colours to distinguish different sub-networks. The PUs allocated to each layer and their cooperation type is attached besides the nodes. For example, layer P1
needs input width cooperation (IWC) and PUs allocated to layer P1 are PU-3 and PU-5. Other layers in this example do not need PU cooperation, so their
cooperation types are no cooperation (NC). (d) the inter-PU architecture derived from Interconnection Exploration. The details of the figure will be introduced
in Section IV; (e) the execution state of HCG corresponding to the first sub-network (layer C0, D1, D2, P1, C2 and E4.1) in (c). The red bolded lines denote
the enabled data path when computing the first sub-network.

iteratively tunes the basic PU list according to the resource
constraint of target FPGA and guidance from SCG. Finally,
the interconnection exploration sub-step partitions the DNN
into multiple sub-networks according to the PU list determined
in the above steps. Then, specific PUs are allocated to the
corresponding layers so that the interconnection between every
two specific PUs can be determined. The detailed steps and
algorithms of these strategies will be introduced in Section V.

Code generation converts HCG and PU allocation result
to synthesizable register transfer level (RTL) code and run-
time control code, respectively. The synthesizable RTL code
describes the architecture of accelerator. The runtime control
code mainly includes the configuration parameters of each PU
and control signals at inter-PU level.

Since SCG generation and code generation have been
widely studied and many existing methods [6, 7, 15, 16] can
be used, this paper mainly focuses on HCG generation, which
will be introduced in the following two sections.

IV. HCG REPRESENTATION

This section introduces HCG representation, which is the
basis of our HCG system.

By representing DNN accelerators at the inter-PU level,
HCG is proposed to support the inter-PU architecture explo-
ration. The main idea of HCG is to represent PUs as nodes
and the interconnection between PUs as edges. Node types in
HCG are similar to layer types in SCG. The edge in HCG
depends on the cooperation methods between nodes.

In the inter-PU architecture, PUs are organized to cooperate
with each other, and one layer can be computed with multiple
PUs according to its computation requirement. The common
method for the PUs’ cooperation is to partition data into
different PUs and process partitioned data in different PUs
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Fig. 2. Illustrative examples of (a) input width cooperation (IWC) and (b)
filter level cooperation (FLC).

[35, 36, 37]. However, unlike these existing works with an
inter-PU template that predetermines the cooperation methods
between PUs and partitions data in a fixed way [35, 36, 37],
HCG provides multiple cooperation methods as candidates and
chooses one suitable method during the inter-PU architecture
exploration.

Specifically, HCG offers three possible cooperation meth-
ods between PUs for different layers, including input width
cooperation (IWC), filter level cooperation (FLC), and no
cooperation (NC). IWC targets at pooling layers because
pooling layers are always located at the early part of DNN,
which causes the width of input activation to be larger than
its depth. When the on-chip memory footprint3 of a specific
pooling layer is too large to be accommodated by one single
PU, the activation should be partitioned on the input width di-
mension. More specifically, IWC method slices the activation
with the shape of (Depth×Height×Width) into multiple

3This paper uses on-chip memory size to denote the number of on-chip
memory equipped in a PU, and uses on-chip memory footprint to denote the
required on-chip memory on FPGA of a layer.
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Fig. 3. The distribution of memory footprint on FPGA of every layer in
ResNet-50 (a), Inception-V3 (b) and AmoebaNet (c). Different colors in a
single chart represent different on-chip memory footprints, and the percentage
is the ratio between the number of layers with the same memory footprints
to the total number of layers.

small activations with the shape of (Depth × Height ×
Widthi, s.t. ΣiWidthi = Width). Each small activation
is assigned to a PU for computation. Figure 2(a) gives an
example in which the activation of a max pooling layer is
sliced into two PUs. Moreover, Figure 1(c) and Figure 1(d)
give an illustrative example about how IWC works in HCG. In
the figure, PUs allocated to layer P1 are PU-3 and PU-5, which
cooperate through IWC. Hence, the activation of layer P1 will
be sliced into two blocks, which will be transferred to PU-3
and PU-5 on the fly, respectively. FLC targets at convolution
layers and fully connected layers. Unlike IWC, FLC slices the
original weight with the shape of (FilterNum × Depth ×
KernelSize×KernelSize) into multiple blocks of weights
with the shape of (FilterNumi × Depth × KernelSize ×
KernelSize, s.t. ΣiFilterNumi = FilterNum), which
will be transferred to multiple PUs. Figure 2(b) gives an
example in which the weight of a convolution layer is sliced
into three PUs. If a specific PU can accommodate the on-chip
memory footprint of a layer, NC should be adopted. Besides
these three cooperation methods, it is worth mentioning that
since HCG representation does not put any constraints on the
cooperation methods, it can be extended to support other kinds
of cooperation methods.

Since there are three possible cooperation methods for each
layer, the interconnection between two layers includes 32 = 9
types. Correspondingly, there are nine possible interconnection
types between each pair of PUs. For example, the intercon-
nection between PUs allocated to layer P1 (PU-3 and PU-5
cooperate through IWC) and layer E4.1 (PU-4) in Figure 1(c)
is denoted as {IWC → NC}.

V. HCG GENERATION

This section introduces the details of HCG generation,
which consists of three sub-steps: pre-pruning, PU list explo-
ration and interconnection exploration.

A. Pre-Pruning

Based on the introduced HCG representation, we propose a
novel appearing-frequency guided pruning method to enhance
the on-chip memory utilization. Specifically, it is motivated
by the observation that there is always a frequent item in
the memory footprint set of layers on FPGA. For example,
Figure 3 shows the distribution of layers’ memory footprint on
FPGA of three DNNs. From the figure, we can see that there
always exists an apparent part that occupies the majority of

Algorithm 1 Dependency Build
Input: SCG;
Output: Dependency matrix: D;

1: L← ‖SCG‖;
2: A← Adjacent matrix of SCG;
3: D ← 0L×L; // Initialize to zero.
4: for i ∈ {1, 2, ..., L} do
5: for j ∈ {1, 2, ..., L} do
6: D[i, j] = A[i, j]

∨
(∃k,D[i, k]

∧
A[k, j])

∧
7: IsTransParent(SCGj);
8: end for
9: end for

each pie chart. Hence, inspired by structural pruning which has
been proven to be successful in lowering the memory footprint
of DNNs on GPU, we propose to structurally prune the DNN
on the basis of this observation.

The basic idea of appearing-frequency guided pruning is to
prune those layers that require infrequent memory footprints
into frequent ones as much as possible. The straightforward
method is to calculate the memory footprint of every layer
and prune the one whose memory footprint is not frequent.
However, the topology of DNNs prevents us from adopting
this method and raises two problems for us. On the one
hand, pruning a specific layer affects the memory footprint
of its adjacent layers. For example, if a convolution layer
is structurally pruned with a certain number of filters, its
output data shrinks in the depth dimension. This will change
the input depth number of its downstream layers and thus
affect the downstream layers’ memory footprint. Moreover,
the complex topology of modern DNNs makes this problem
even more challenging since the layers always have more
than one upstream and downstream layer. On the other hand,
layers are not always prunable due to topology constraints.
For example, according to our experiments, the last layer
of DNNs always requires more memory than others due to
the large weight dimension. However, the filters of the last
layer are not structurally prunable because they are usually
used for classification and each filter corresponds to a specific
classification label.

To solve these two problems, we propose to firstly generate
pruning groups for the given DNN based on its topology in
the pre-pruning step. Specifically, each pruning group has a
root layer and a list of dependent layers. The root layer is the
one that requires an infrequent memory footprint and needs
pruning. The dependent layers are those layers that change in
memory footprint with the root layer. Before the generation
of pruning groups, the rules that determine the dependencies
between layers should be defined. Algorithm 1 shows the
dependencies building process. During the process, layers are
classified into two categories according to their behaviour
over data. The first category is named the transparent layer,
suggesting that the pruning scheme of the layer’s input data
can be transmitted into its output data. For example, if one
of the input data of the concatenation layer is pruned in the
depth dimension, the corresponding positions of the layer’s
output will also be pruned. Specifically, this layer category
includes layers such as concatenation, pooling, and non-linear
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Algorithm 2 Pruning Group Generation
Input: Dependency matrix: D; SCG;
Output: Pruning Group: G;

1: G← { };
2: for i ∈ {1, 2, ..., ‖SCG‖} do
3: if IsFreq(SCGi) == Fasle then
4: g ← empty object of pruning group;
5: g.root←SCGi;
6: g.deps← {SCGj |Di,j = 1};
7: G← G ∪ {g};
8: end for

activation. The second category is named the non-transparent
layer, which consists of convolution, fully connected layer,
and element-wise addition. The pruning scheme of input data
will not be transmitted to the output data of these layers.
For example, the dimension of the output data of convolution
layers will not change with the input data. Based on the
layer classification (line 7 in Algorithm 1), the process of
dependency building can be summarized as the depth-first
traversal upon SCG with the arising of the non-transparent
layer as the ending condition.

The pruning groups are generated with the guidance of the
given dependency matrix. Algorithm 2 shows the process. The
main idea of this process is to find out every root layer and
its dependent layers. Specifically, the algorithm traversals each
layer and constructs a pruning group object for those layers
that require infrequent memory footprints. The function IsFreq
is used to judge whether the given layer is frequent.

Finally, the generated pruning groups are progressively
pruned one by one until the root layers in all groups are
frequent or the iteration counter exceeds the preset maximum
number of steps. Algorithm 3 shows the process. Specifically,
for each pruning group, the algorithm structurally prunes the
filters of the root layer with a preset step size. The step size is
used to guarantee that the filter number of the root layer after
pruning is divisible by the parallelism number. Currently, we
directly use the off-the-shelf structural pruning method with
L1-Norm importance evaluation [27] to operate the root layer
(line 7 in Algorithm 3). After the root layer is pruned, the
dependent layers are manipulated in the corresponding dimen-
sion. Then, a function CheckAndLegalize is used to legalize the
pruned structure of DNN. This function mainly relies on two
rules. One rule is to fix the dimension inconsistency between
input data of element-wise addition layers since this layer
requires the same dimension of all input data. If the function
finds this inconsistency, all dimensions of the input data of
the layer will be forcibly changed to the maximum dimension
across all input data of this layer. The other rule is to guarantee
that the output of the classification layer is not pruned. The
output depth of the classification layer must be the same as
the number of classification labels.

With the appearing-frequency guided pruning, not only does
the total memory footprint of the whole DNN decrease, but the
memory footprints of layers also become more concentrated.
Figure 4 shows the distributions of memory footprint of every
layer in three DNNs. From the figure, we can find that the
frequent item of memory footprint becomes more frequent,

Algorithm 3 Appearing-Frequency Guided Pruning
Input: SCG; dependency matrix: D; Pruning step size: StepSize;
Output: Pruned SCG: SCGP ;

1: SCGP ← SCG;
2: // Build the pruning groups for SCGP .
3: G← Pruning-Group-Generation(SCGP , D);
4: ite← 0;
5: while ite ≤MaxIte or (∃g′ ∈ G, IsFreq(g′.root) 6= True) do
6: for g ∈ G do
7: Prune(g, StepSize) ;
8: CheckAndLegalize(G);
9: end for

10: ite++;
11: end while

90.7%

7.4%
(a)

98.9%

(b)

90.4%

7.1%
(c)

Fig. 4. The distribution of memory footprint on FPGA of every layer in
ResNet-50 (a), Inception-V3 (b) and AmoebaNet (c) after appearing-frequency
guided pruning.

compared with the original ones in Figure 3. The concentration
of memory footprints benefits the following PU list generation
since it enhances the appearing-frequency first principle.

B. PU List Exploration

Since each node of HCG is a PU, the exploration of PU list
essentially generates the nodes of HCG. This section provides
guidelines of the exploration and the step-by-step breakdown
of the process.

1) Guidelines: The process of PU list exploration can be
described as an optimization problem under constraints. In
this paper, the optimization objective is the on-chip memory
utilization, as introduced in Section I. The constraints refer
to the hardware resource of the given FPGA, including on-
chip memory, off-chip memory, arithmetic resource (DSP), and
logical resource (LUT).

Specifically, HCG optimizes the on-chip memory utilization
by minimizing the mismatched on-chip memory size between
the on-chip memory footprints of layers and the on-chip
memory sizes of their allocated PUs, which is formally defined
in Equation (1).

min

n∑
i=1

∑mi
j=1 PUj .ocm− FPT (SCGi)

n

s.t.

mi∑
j=1

PUj .ocm− FPT (SCGi) ≥ 0

(1)

In Equation (1), n is the total number of nodes in SCG,
mi is the number of PUs allocated to SCGi, PUj .ocm is
the on-chip memory size of the j-th PU allocated to SCGi,
FPT (SCGi) is the on-chip memory footprint of SCGi. The
numerator of Equation (1) represents the mismatched on-chip
memory size of SCGi. If the numerator is larger than zero, the
allocated on-chip memory size exceeds the footprint of SCGi,
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Algorithm 4 Stage 1 of PU List Exploration
Input: Pruned SCG: SCGP ; total number of DSPs, on-chip memory

of the target FPGA : (DSPT , OCMT );
Output: Basic PU list: BasicPUList;

1: BasicPUList ← { };
2: tmpPUList ← { };
3: for i ∈ {1, 2, ..., ‖SCGP ‖} do
4: newPU = empty object of PU;
5: newPU.ocm = FPT (SCGP i);
6: tmpPUList = tmpPUList ∪ {newPU} ;
7: end for
8: Cluster the PUs in tmpPUList with their on-chip memory size,

and then count the appearing-frequency of each PU cluster;
9: maxFreq ← the max appearing-frequency of PU clusters;

10: maxFreqPU ← a PU in the PU cluster with max frequency;
11: (DSPreq, OCMreq)← Resource-Calculation(maxFreqPU );
12: Append min(bDSPT×maxFreq

DSPreq
c, bOCMT×maxFreq

OCMreq
c)

maxFreqPUs to BasicPUList;

which results in waste of on-chip memory. If the numerator is
zero, the on-chip memory size allocated to SCGi matches its
footprint without wasted on-chip memory. Hence, Equation (1)
summarizes the averaged wasted on-chip memory of the input
DNN.

From Equation (1), the ideal case between layers and PUs
on the chip is that every layer can find a PU generated exactly
according to its memory footprint, where the mismatched
on-chip memory size is zero. However, generating the inter-
PU architecture without inter-PU templates suggests that this
ideal case should be divided into two ideal subcases. Firstly,
there should exist PUs on the chip that are generated exactly
according to a layer’s memory footprint. Secondly, the PU
generated exactly according to a layer’s memory footprint
should be allocated to this layer. Based on these two ideal
subcases, we propose two guidelines for PU generation and
PU allocation, respectively.

For the guideline of PU generation, the first ideal subcase
suggests that the ideal generation method should generate a
PU according to a layer’s memory footprint. On the one hand,
this generation method is not practicable for every layer since
HCG does not adopt any inter-PU template, and subsequently
PUs are possibly reused across different layers. On the other
hand, the more layers adopt the ideal generation method, the
smaller the mismatched on-chip memory size is. Hence, to
maximize the number of layers adopting the ideal generation
method, HCG applies this method to those layers that appear
most frequently. The motivation of this strategy is similar to
that of the appearing-frequency guided pruning, as introduced
in Section V-A. This guideline is reflected in an appearing-
frequency first generation method.

For the guideline of PU allocation, the second ideal subcase
suggests that the allocation of those layers that can find a
PU generated according to their memory footprints should
be prioritized. This guideline is reflected in a PU allocation
algorithm with priority, which will be introduced in following
subsection.

2) PU List Exploration: PU list exploration involves two
stages. Stage 1 generates a list of basic PUs and stage 2
iteratively tunes the list until it satisfies the requirements of

Algorithm 5 Stage 2 of PU List Exploration
Input: Basic PU list: BasicPUList; Pruned SCG: SCGP ; on-chip

memory, DSPs and off-chip communication channels of the target
FPGA : (OCMT , DSPT , OFMT );

Output: PU list: PUList;
1: start ← 0, end ← 0, PUList ← BasicPUList;
2: while True do
3: for i ∈ {1, 2, ...,MaxL} do
4: cand ← SCGP [start : start+i];
5: Allocm ← PU-Allocation(cand, PUList);
6: (OCMm, DSPm, OFMm) ←
7: Resource-Calculation(Allocm);
8: if (OCMm, OFMm) < (OCMT , OFMT ) then
9: DSPc ← DSPm;

10: Allocc ← Allocm;
11: end← end+ 1;
12: else break;
13: end for
14: newPU ← (the new PU derived from Allocc);
15: if DSPc < DSPT then
16: // Append a new PU to the PUList.
17: PUList = PUList ∪ newPU ;
18: else
19: // Fuse the new PU to the smallest PU inside PUList.
20: PUs ← PU∗, s.t.(∀i, PUi.ocm ≤ PU∗.ocm);
21: PUs.ocm + = newPU.ocm;
22: if end = len(SCGP ) then return // End of the input DNN.
23: else start ← end;
24: end while

input DNN.
Stage 1 is based on the appearing-frequency first gen-

eration. Algorithm 4 shows the process. The strategy first
temporally generates a PU for every layer according to its
memory footprint (line 2 ∼ 7). Function FPT calculates
the on-chip memory size occupied by the input footprint. In
practice, if block random access memory (BRAM) is used
to accommodate the footprint, FPT calculates the size of
BRAM consumed by the input layer and returns the capacity
of consumed BRAMs. Then these temporally generated PUs
are clustered according to their on-chip memory size, and
the appearing-frequency of each PU cluster is calculated (line
8). The PUs in the PU cluster with the highest appearing-
frequency are chosen as the primary elements of the basic
PU list, while other PU clusters are ignored (line 10). Finally,
after calculating the hardware resources of one single primary
element (line 11), the algorithm appends as many primary
elements as possible to the basic PU list under the constraints
of hardware resources (line 12). Here, the total number of
hardware resources (DSP and on-chip memory) are multiplied
by maxFreq to guarantee that the primary elements occupy
a major part of the whole chip in priority while leaving
space for stage 2 of PU list exploration. By prioritizing the
most frequently appearing layers, the majority of DNN can
be allocated with matched PUs without the waste of on-chip
memory, reducing the mismatched on-chip memory size.

Stage 2 iteratively tunes the basic PU list until it satisfies
the computation requirement of the entire DNN. Algorithm
5 shows the process. In each iteration, the algorithm first
generates a sub-network candidate comprising a continuous
part of DNN (line 4). Then, the PUs allocated for the candidate
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Algorithm 6 PU Allocation Strategy with Priority
Input: SubSCG (A sub-network); PUList;
Output: D (a dictionary, layer → PU);

1: // STEP 1: Prioritized allocation.
2: NonPrio ← { };
3: for i ∈ {1, 2, ..., ‖SubSCG‖} do
4: // {PUs of SubSCGi.type} is to aggregate PU from PUList

of the SubSCGi.type;
5: PUt = {PUs of SubSCGi.type};
6: D[SubSCGi] ← PRIO-ALLOC(SubSCGi, PUt);
7: PUList = PUList \D[SubSCGi];
8: if D[SubSCGi] == ∅ then
9: NonPrio = NonPrio ∪ SubSCGi;

10: end for
11: // STEP 2: Search the PU list to minimize the mismatch.
12: for i ∈ {1, 2, ..., ‖NonPrio‖} do
13: PUt = [PUs of NonPrioi.type];
14: D[NonPrioi] ← MIN-MISMATCH(NonPrioi, PUt);
15: PUList = PUList \D[NonPrioi];
16: end for
17: function PRIO-ALLOC(op, PUs)
18: if ∃i, s.t.(PUsi.ocm = FPT (op)) then
19: return {PUsi};
20: else return ∅;
21: function MIN-MISMATCH(op, PUs)
22: if Σ[PUs].ocm ≥ FPT (op) then
23: return [PUsi],min(ΣPUsi.ocm),
24: s.t.(ΣPUsi.ocm ≥ FPT (op));
25: else return [newPU, PUs],
26: s.t.(Σ[newPU, PUs].ocm = FPT (op));

sub-network are derived based on the current PUList, in which
the PU allocation strategy with priority is adopted (line 5).

The PU allocation strategy is shown in Algorithm 6. It takes
a sub-network and a PU list as input and allocates specific
PU to every layer in the input sub-network. In the algorithm,
the allocation of those layers which can find a PU generated
according to their footprint is considered in priority (STEP
1 in Algorithm 6). Function PRIO-ALLOC (line 6) traverses
the PUList and returns a specific PU that accommodates the
same size of on-chip memory as the footprint of the input
layer. Then, the algorithm searches the PUList to minimize
the mismatch of those layers that are left by PRIO-ALLOC
(STEP 2 in Algorithm 6). Function MIN-MISMATCH returns
a list of PUs with respect to the condition at line 24. The term
min(ΣPUsi.ocm) suggests using the minimal memory to
compute the input layer, which also minimizes the mismatched
on-chip memory size of the layer. Specifically, if the input
footprint is smaller than any PU’s on-chip memory size in
the PUList, MIN-MISMATCH returns a list comprising the
PU with the smallest on-chip memory. If the input footprint
is larger than any PU’s on-chip memory size in the PUList,
MIN-MISMATCH returns a list comprising multiple PUs that
cooperate through FLC or IWC method. Moreover, as the allo-
cation process goes on, PUs are progressively consumed (line
7 and 15). When the existing PUList no longer satisfies the
footprint of a specific layer, MIN-MISMATCH will calculate
the number of missing resources and return a new PU object
accordingly (line 26).

After PU allocation, the sub-network with a maximum
length is chosen under hardware resource constraints (line 3

∼ 5 in Algorithm 5). Since the number of PUs is positively
correlated to the number of layers in sub-networks, choosing
the sub-network with a maximum length will allocate as many
PUs on the chip as possible, which shortens the processing
latency. For the new PU derived from PU allocation, it is
appended to the PUList in priority (line 17). When the DSPs
are not sufficient to append a new PU, the algorithm fuses the
new PU to the smallest PU inside the PUList (line 19 ∼ 21).

With Algorithm 5, we can get different inter-PU architec-
tures under different resource constraints. More specifically,
when the resources are sufficient to put all layers on the
chip, the strategy in HCG will generate an architecture that
is the same as that generated with a layer pipelined template
[6, 7, 15, 16, 17, 18]. When the resources are so rare that
only one PU can be placed on the chip, the strategy in HCG
will generate an architecture that is the same as that generated
with a layer sequential template [8, 9, 11, 12, 13, 14]. That
is to say, the ADA methods with layer pipelined template and
layer sequential template can be treated as degenerated cases
of our HCG method.

C. Interconnection Exploration

After the PU list exploration, the interconnection explo-
ration is conducted. Since the interconnection between PUs is
derived from PUs’ cooperation method and allocation results
as introduced in Section IV, this strategy first performs PU
allocation on SCG with the PU list determined at the PU
list exploration step. Specifically, this allocation process will
calculate the number of PUs needed for each layer and allocate
specific PUs to each layer, which consequently determines the
interconnection between PUs. The method of the PU allocation
process is similar to that in the PU list exploration, except that
no modification to the PU list is allowed. Furthermore, in order
to reduce the difficulty of routing and placement in hardware,
we prune the interconnection with the same type between two
specific PUs.

VI. HARDWARE IMPLEMENTATION

In this section, we introduce the inter-PU infrastructure,
the intra-PU architecture, on-chip memory usage, and off-chip
memory usage.

A. Inter-PU Infrastructure

Due to the PU cooperation, nine interconnection types
between PUs exist in HCG. Thus, a flexible inter-PU in-
frastructure is required to satisfy organizational requirements
arising from these interconnection types. On the one hand,
the inter-PU infrastructure should flexibly deal with all types
of interconnection between PUs. To this end, we split every
interconnection into frontend and backend, which are placed
at the input port and the output port of each PU, respectively.
Figure 1(c) and Figure 5 shows an example. In Figure 1(c),
the pooling layer P1 needs IWC, and the PUs allocated to
it are PU-3 and PU-5. At the same time, its downstream
layer E4.1 needs NC, and the PUs allocated to it are PU-
4. Hence, an IWC → NC frontend is placed at the output
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Algorithm 7 Convolution Pseudo Code
Input: Input Activation: A; Weight: W ;
Output: Output Activation: Out;

1: // A follows the shape of [Hi,Wi, Di].
2: // W follows the shape of [F,K,K,Di].
3: Out = 0Ho×Wo×F ; // Initialize to zero.
4: for oh ∈ [1, Ho]
5: for ow ∈ [1, Wo]
6: for f ∈ [1, F/OutP ]
7: for kh ∈ [1,K]
8: for kw ∈ [1,K]
9: for id ∈ [1, Di/InP ]

10: #pragma unroll
11: for ip ∈ [1, InP ]
12: #pragma unroll
13: for op ∈ [1, OutP ]
14: Out[oh, ow, f ∗OutP + op]+ =
15: A[oh+ kh, ow + kw, id ∗ InP + ip]∗
16: W [f ∗OutP + op, kh, kw, id ∗ InP + ip]
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Fig. 5. Inter-PU infrastructure and intra-PU design.

ports of PU-3 and PU-5, and an IWC → NC backend is
placed at the input port of PU-4, as shown in Figure 5. In
practice, the code generation step of the HCG system generates
these frontend and backend modules as the components of
the accelerator. On the other hand, the inter-PU infrastructure
should provide support for computing different sub-networks
with one shared HCG. Since the topology and PUs allocation
scheme differ between sub-networks, the data paths between
PUs are also different. Hence, we provide programmability
for the connections between PUs. Specifically, we put a
multiplexer at the input port and a demultiplexer at the output
port for each PU, shown in Figure 5. In this way, multiple
data paths are organized through the interconnection between
these components. By controlling each node’s multiplexer
and demultiplexer, the data path of the whole chip can be
controlled. For example, when executing the first sub-network
of Figure 1(c), the bolded edges in Figure 1(e) are enabled,
and others are disabled. The controlling signals of multiplexers
and demultiplexers are generated by the code generation step
in HCG system and transferred to the chip through an AXI-
Lite interface.

B. Intra-PU Architecture Design

As introduced in Section III, HCG supports almost all
commonly used layers, including convolution, pooling (max
pooling, average pooling, and global pooling), element-wise

addition, concatenation and non-linear activation functions
such as ReLU. The implementation of depth-wise convolution
PU and pooling PU are similar to the convolution PU, and
other types of PUs are relatively straightforward to implement.
Hence, the implementation details of PUs, except convolution
PU, are omitted. Moreover, since the design of intra-PU archi-
tecture is not the focus of this paper and HCG is orthogonal
to existing works about intra-PU optimization, we directly
integrate HCG with an ordinary intra-PU design, which has
been widely used in many related works [38, 39], to compute
convolution layers. This intra-PU design adopts the output
stationary dataflow [38]. Its pseudo-code for computation is
listed in Algorithm 7. In the algorithm, Hi, Wi, and Di are
the input activation’s height, width, and depth. F and K are
filter number and kernel size of weight. InP and OutP are
the input and output parallelism factor of the convolution
PU, respectively. Since these two parallelism factors are the
optimization targets of intra-PU architecture design, which is
not the focus of HCG, this paper directly sets both of them
to 32. Figure 5 also shows the illustrative diagram of the
convolution PU. As can be observed, the PU mainly computes
the multiplication between an activation vector and a weight
tile per cycle with a multiplier array. The column dimension
of the array is the accumulative dimension, and adder trees
perform the accumulation. The activation vector is shared
along the row dimension. More details of the implementation
of each sub-module can be found in [38]. Please note that
HCG does not put any constraints on the intra-PU architecture
design. Hence, it can be seamlessly integrated with other
existing works on intra-PU optimization, no matter whether
with intra-PU templates or without intra-PU templates.

C. On-chip Memory Usage

HCG uses BRAM to implement the activation buffer and
weight buffer in convolution PU, depth-wise convolution PU,
and pooling PU. Moreover, Algorithm 4 and Algorithm 6 use
the function FPT to estimate the BRAM consumption for
a given layer. According to the documentation provided by
vendor [40], the maximum width of a BRAM is 72 bits,
and the corresponding depth is 512. Therefore, the number
of BRAMs needed by a buffer with the depth of D and
transferring W bits per clock cycle is:

bram number =

⌈
W

72

⌉
×

⌈
D

512

⌉
. (2)

As shown in Figure 5, the W of activation buffer (Wa) and
weight buffer (Ww) is (InP×Ibit) and (InP×OutP×Wbit),
respectively. Moreover, followed by the intra-PU design, the
depth of activation buffer Da and the depth of weight buffer
Dw are:

Da = K × d Di

InP
e ×Wi. (3)

Dw = K ×K × d Di

InP
e × d F

OutP
e. (4)

Moreover, due to the usual computation imbalance of
branches in DNNs, the multiple inputs of concatenation and
element-wise addition layers arrive at different times. This
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TABLE I
HARDWARE RESOURCE OF BACKEND PLATFORMS.

FPGA Process LUT DSP On-chip
Mem.

Off-chip
Communication

KCU1500 20nm 397K 5520 9.95 MB DDR4 & PCIe
VU9P 16nm 1182K 6840 43.24 MB DDR4 & PCIe
1 the on-chip memory of VU9P can be divided into Block RAM (9.49 MB)

and UltraRAM (33.75 MB).

makes the concatenation and element-wise addition PUs fail
to consume the input data immediately, thus possibly causing
the execution failure of the whole DNN. To this end, we place
a First-In-First-Out (FIFO) module in the earlier arrival port
of every concatenation and element-wise addition PU. These
FIFOs are also implemented with BRAMs, which also have a
width of Wa.

D. Off-chip Memory Usage

HCG uses off-chip memory as the off-chip cache for both
activation and weight. Before the execution of each sub-
network, the required weights are firstly transferred to the
corresponding on-chip weight buffers. Then, the input data of
current sub-network is transferred to activation buffers and the
execution begins. In practice, we use the DDR chips embedded
on FPGA boards and CPU memory communicates through
PCIe as off-chip memory. HCG is embedded with a program
that allocates the activation and weights to different off-chip
memory. For example, in Figure 1(e), while PU-4 transfers its
output data to DDR 1, PU-1 simultaneously reads its input
data from DDR 0.

VII. EVALUATION

In this section, we evaluate the effectiveness of HCG. We
firstly evaluate the effectiveness of the proposed appearing-
frequency guided pruning (introduced in Section V-A). Sec-
ondly, the effectiveness of appearing-frequency first generation
(introduced in Section V-B) is verified. During its verification,
we give a comprehensive analysis of the mismatched on-chip
memory size. Thirdly, we compare HCG with the SOTA works
on ADA or manually designed accelerators. Finally, since
some evaluated DNNs have not been implemented on FPGA
before, we compare the latency among HCG (FPGA), CPU
and GPU.

A. Experimental Setup

HCG uses Verilog HDL to describe the generated ac-
celerators. All experiments are operated on Xilinx Vivado
2020.1 with the default synthesis options. Moreover, we
mainly choose KCU1500 as the backend platform. Since some
existing works use VU9P as their backend, we also provide the
results of HCG using VU9P for comparison. The information
about these two FPGAs is shown in Table I. In terms of
off-chip communication, KCU1500 provides four pieces of
DDR4, which can be accessed through AXI full channels. The
PCIe of KCU1500 can be configured as four parallel AXI-
Stream channels, where each channel can reach the maximum
bandwidth of 250MHz × 256bits. We configure both of

these two FPGAs to operate at 200 MHz with 256 bits per
clock cycle for each off-chip memory communication channel,
which satisfies the physical bandwidth constraint. During the
comparison among HCG, CPU and GPU, the CPU is Intel
Xeon E5-2620 operating at 2.10 GHz, while the GPU is Nvidia
TITAN XP with 12 GB GDDR5X and 3840 CUDA cores
operating at 1.8 GHz. For both CPU and GPU, the DNNs are
implemented with PyTorch 1.5.0.

Prior work [41] classifies DNNs into regularly and irreg-
ularly connected DNNs according to the regularity of con-
nection between layers. ResNet [20] and RandWire [21] are
the representatives of these two kinds of DNNs, respectively.
The overall topology of ResNet [20] is the repetition of
residual blocks. On the contrary, RandWire [21] does not show
regularity in topology. Moreover, work in [41] finds that irreg-
ularly connected DNNs show higher accuracy than regularly
connected ones with the same computation budget. Hence,
we evaluate both regularly connected DNNs and irregularly
connected DNNs. For regularly connected DNNs, we evaluate
ResNet [20], DenseNet [42], GoogleNet [19] and Inception-V3
[43]. For irregularly connected DNNs, we evaluate RandWire
[21] and AmoebaNet [22]. The input image size for all DNNs
is 3× 224× 224.

For evaluation metrics, we mainly consider the overall on-
chip memory consumption and latency when comparing HCG
with other works. Since the independent comparison of these
two metrics cannot directly demonstrate the performance of
HCG on on-chip memory utilization, a combined metric jointly
considering latency and on-chip memory consumption is re-
quired. Hence, following the definition of widely used energy
efficiency (image/s/W) [6] and DSP efficiency (image/s/DSP)
[38], we use On-chip Memory Efficiency (image/s/MB) when
comparing HCG with other works on FPGAs, which is defined
as follows:

On-chip Memory Efficiency =
β

Latency × On-chip Memory
(5)

The β balances the effect of data precision on overall on-chip
memory consumption, where it is set to 1 and 2 for 8-bit
and 16-bit precision, respectively. Equation (5) considers the
latency and overall on-chip memory consumption at the same
time and directly reflects the on-chip memory utilization.

B. The Effectiveness of Appearing-Frequency Guided Pruning

In this section, we study the effectiveness of appearing-
frequency guided pruning from three aspects: the effectiveness
on memory footprint distribution, the effectiveness on memory
efficiency, and the effectiveness of model accuracy preserva-
tion.

As introduced in Section V-A, the pruning embedded in the
HCG system mainly targets at those layers requiring infrequent
memory footprints and prunes their memory footprints into
frequent ones as much as possible. Figure 3 and Figure 4
illustrate the comparison of memory footprints for ResNet-
50, Inception-V3, and AmoebaNet with and without pruning,
respectively. As introduced in Section V-A, the memory foot-
prints of layers become more concentrated after pruning. Here,
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Fig. 6. The standard deviation comparison of memory footprints distribution
of benchmark with the appearing-frequency guided pruning (AFF-P) and
without the pruning (AFF).

we additionally use the standard deviation of layers’ memory
footprints as the criterion to show the effectiveness of the
proposed pruning method over all benchmarks. Figure 6 shows
the comparison results. The figure shows that our pruning
method reduces the standard deviation of memory footprint
by 0 ∼ 96% and averages at 60% across all benchmarks.
Specially, DenseNet-121 fails to benefit from the pruning
because its original memory footprints of layers are almost
the same, which means there are no infrequent items in the
model. Moreover, ResNet-50, ResNet-101 and ResNet-152
appear to be more sensitive to the pruning than other models.
The reason is that these three models have more infrequent
memory footprints and thus are pruned more drastically than
others. Specifically, these three models are pruned with 50%
of weights while others are only pruned with an average of
18% of weights. Furthermore, it is observed that infrequent
memory footprints still exist in the pruned model since the
standard deviation is larger than zero. This is mainly due to
the topological limitation during pruning, which is introduced
in Section V-A.

The experimental results also show that the appearing-
frequency guided pruning can significantly improve memory
efficiency. In particular, Table II shows the details of pro-
cessing latency and hardware resources of the HCG with
the proposed pruning (denotes AFF-P) and the HCG without
pruning (denotes AFF). It shows that almost all pruned models
occupy less memory but have lower processing latency than
the original ones. The memory of ResNet-152 and Inception-
V3 slightly increase after the pruning, mainly due to the
increase in activation memory. Specifically, the pruning makes
those infrequent memory footprints equal to the frequent
ones, thus making more layers to be processed simultaneously
in one single sub-network, which increases the activation
memory but lowers the processing latency. Moreover, since the
activation memory is relatively small compared with weights,
it keeps consistent with the optimization goal of this paper.
Figure 7 shows the memory efficiency comparison between
HCG without pruning and HCG with pruning. From the figure,
we can find that pruning enhances the memory efficiency by
0 ∼ 102% and averages 33% across all benchmarks. The
analysis is similar to that of the effectiveness over memory
footprint.

For the model accuracy preservation, we test the accu-
racy of all evaluated DNNs over CIFAR-100 dataset [44]
before and after pruning. It shows that the accuracy of five
DNNs slightly increases after pruning, including ResNet-101
(+0.18%), ResNet-152 (+0.19%), DenseNet-201 (+0.28%),

TABLE II
OVERALL RESOURCES AND LATENCY COMPARISON.

DNNs Strategy LUT
(K) DSP On-Chip

Memory (MB)
Latency

(ms)

ResNet-50 [20]
AFF-P 309 5218 7.40 (78%) 3.41
AFF 317 5218 7.90 (83%) 5.95
EC 233 3134 9.44 (99%) 7.80

ResNet-101
AFF-P 314 5218 7.27 (76%) 5.71
AFF 323 5218 7.53 (79%) 11.15
EC 233 3134 9.48 (99%) 14.49

ResNet-152
AFF-P 315 5218 6.88 (72%) 8.39
AFF 333 5218 6.84 (72%) 14.77
EC 233 3134 9.45 (99%) 20.08

DenseNet-121 [42]
AFF-P 319 5226 6.65 (70%) 3.96
AFF 319 5226 6.65 (70%) 3.96
EC 319 5226 8.25 (87%) 4.02

DenseNet-169
AFF-P 318 5226 5.90 (62%) 4.775
AFF 319 5226 6.25 (66%) 5.00
EC 320 5226 8.72 (92%) 5.66

DenseNet-201
AFF-P 319 5226 5.87 (61%) 5.84
AFF 321 5226 6.40 (67%) 6.37
EC 295 4705 8.84 (93%) 8.29

GoogleNet [19]
AFF-P 322 5234 6.21 (65%) 4.39
AFF 323 5234 6.27 (66%) 4.50
EC 323 5234 8.28 (87%) 4.57

Inception-V3 [43]
AFF-P 328 5234 6.23 (65%) 9.36
AFF 328 5234 6.17 (65%) 10.30
EC 326 5234 8.93 (94%) 11.46

RandWire [21]
AFF-P 328 4929 6.06 (63%) 10.00
AFF 357 5450 6.07 (64%) 9.99
EC 327 4929 8.04 (85%) 10.23

AmoebaNet [22]
AFF-P 379 5250 6.05 (63%) 25.45
AFF 396 5258 6.43 (68%) 30.53
EC 253 3166 8.61 (91%) 55.58

1 In the Strategy column, ‘AFF-P’ is the appearing-frequency first strategy
with appearing-frequency guided pruning, ‘AFF’ is the appearing
frequency first generation without appearing-frequency guided pruning,
‘EC’ is the equal chance strategy.

GoogleNet (+1.05%) and Inception-V3 (+0.38%). The re-
maining ratio of weight number after pruning of these five
DNNs are respectively 54.06%, 56.88%, 79.86%, 89.93% and
71.54%. GoogleNet achieves the most significant accuracy
increase while retaining the highest weight ratio. This is
because the layers in GoogleNet generally have less weights
than layers in other DNNs, making most of the layers in
GoogleNet require frequent memory footprint and do not
need pruning. Figure 6 supports this analysis, showing that
the standard deviation of the memory footprint distribution
for GoogleNet is relatively small. Specifically, only a single
convolution layer and its downstream layer are pruned during
the pruning of GoogleNet. At the same time, four DNNs
slightly degrade in accuracy, including ResNet-50 (−0.13%),
DenseNet-169 (−0.61%), RandWire (−0.65%) and Amoe-
baNet (−0.41%). The remaining ratio of weight number after
pruning of these four DNNs are respectively 47.82%, 85.97%,
91.76% and 61.35%. RandWire retains the highest number of
weights, which can be attributed to two main reasons. Firstly,
RandWire incorporates a large number of lightweight depth-
wise layers that are ignored by our pruning method. Secondly,
the complex architecture of RandWire imposes significant
topology constraints when generating pruning groups during
the pruning process. In other words, pruning a specific layer
in RandWire necessitates pruning many more upstream and
downstream layers, which forces the algorithm to select fewer
layers for pruning. To the best of our knowledge, this degree
of loss of accuracy is acceptable according to related literature

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3558132

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on April 08,2025 at 09:04:49 UTC from IEEE Xplore.  Restrictions apply. 



11

ResNet-50
ResNet-101

ResNet-152

DenseNet-121

DenseNet-169

DenseNet-201
GoogleNet

Inception-V3
RandWire

AmoebaNet
0

25 21

39

11

24

9
17

37 37 32 35

24
29

35 36

15 17 16 16

5 6

AFF
AFF-P

Fig. 7. The memory efficiency comparison of HCG with the appearing-
frequency guided pruning (AFF-P) and without the pruning (AFF).
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Fig. 8. The mismatched on-chip memory size (MB).

on pruning [27, 28, 29].

C. The Effectiveness of Appearing-Frequency First Genera-
tion

In this section, we study the effectiveness of the appearing-
frequency first generation, which generates a basic set of HCG
nodes (introduced in Section V-B). The strategy prioritizes
those layers with the highest appearing-frequency during the
basic node set generation process. For comparison, we adopt
a baseline strategy that generates a basic HCG node set
containing the same number of PUs as that of the appearing-
frequency first generation but considers different layers with
an equal chance. We name this baseline strategy equal chance
strategy. We will compare the mismatched on-chip memory
size, the overall on-chip memory size, and the latency between
these two strategies.

Figure 8 shows the mismatched on-chip memory size com-
parison between the appearing-frequency first generation and
the equal chance strategy. We can find that the mismatched
on-chip memory size of the equal chance strategy is 1.33×
∼ 2.71× that of the appearing-frequency first generation.
According to the overall on-chip memory consumption com-
parison results shown in Table II, we can find that the equal
chance strategy uses 1.19× ∼ 1.44× more on-chip memory,
compared with the appearing-frequency first generation.

From the latency comparison results shown in Table II, we
can find that the latency of appearing-frequency first genera-
tion is better than the equal chance strategy for all evaluated
DNNs. Moreover, the appearing-frequency first generation
shortens the latency of AmoebaNet most significantly, where
the latency is 1.82× smaller than the equal chance strategy.
This is because AmoebaNet is not only an irregularly con-
nected model but also has the largest number of convolution
layers among evaluated DNNs. The number of convolution
layers directly impacts the PU allocation process since the
convolution layer consumes far more arithmetic and memory
resources than other layers.

ResNet-50
ResNet-101

ResNet-152

DenseNet-121
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Fig. 9. The mismatched on-chip memory size (MB) caused by PU reuse.

In summary, the appearing-frequency first generation sat-
isfies the computation requirements of the major part of the
entire model, which improves the on-chip memory utilization
and shortens the latency.

D. Mismatched On-Chip Memory Size Analysis

Since Section VII-C focuses on the overall comparison
between appearing-frequency first generation and the equal
chance strategy, it only compares the mismatched on-chip
memory size in a shallow way. Therefore, this section gives a
deeper analysis of the mismatched on-chip memory size. We
will first introduce the causes and categories of the mismatched
on-chip memory sizes and then analyze different categories of
mismatched on-chip memory sizes.

The causes of the mismatch can be summarized as the
reuse of PUs across different layers and the on-chip memory
granularity of FPGA. For the reuse of PUs, since all sub-
networks share the same list of PUs, one PU needs to
compute different layers in the DNN. However, the variety
of layers’ requirements makes the on-chip memory size of
PUs unable to satisfy the requirement of every layer without
mismatch. For the granularity of FPGA, two ceiling operations
in Equation (2) make the allocated BRAM always larger than
the requirements, which causes the mismatch. For example, if
both InP and OutP are set to 32 and Wbit is set to 8, the
granularity of the weight buffer will be 114 BRAMs, which
can accommodate (114 × 72 × 512) bits. In summary, the
mismatched on-chip memory size can be classified into two
categories: 1) the mismatched on-chip memory size caused by
PU reuse and 2) the mismatched on-chip memory size caused
by FPGA’s on-chip memory granularity.

The experimental results show that the mismatched on-
chip memory size caused by FPGA’s granularity accounts for
95.5% and 52.0% of the total mismatched on-chip memory
size of the appearing-frequency first generation and the equal
chance strategy, respectively. However, the on-chip memory
granularity of FPGAs is mainly related to the hardware feature,
which is determined by the FPGA vendor and not the focus
of this paper, as in other existing works [3, 6, 16, 17]. Hence,
in order to clearly demonstrate the ability of HCG to reduce
the mismatch, Figure 9 shows the mismatch caused by PU
reuse independently. We can find that HCG generally reduces
the mismatch caused by PU reuse to a relatively low level,
which is 0 ∼ 1/15 of the equal chance strategy. Moreover, it
is worth mentioning that the mismatch caused by PU reuse in
RandWire is reduced to zero because RandWire uses a large
amount of lightweight depth-wise convolution.
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TABLE III
COMPARISON WITH EXISTING METHODS FOR REGULARLY CONNECTED DNNS.

Model ResNet-50 ResNet-152
Category Manual ADA Manual ADA
Method [45] Amoeba [46] LCMM [3] SushiAccel [47] PipeFuser [48] HCG [49] [45] LCMM PipeFuser HCG

Year 2024 2024 2019 2023 2024 2024 2018 2024 2019 2024 2024

FPGA Virtex-7 Arria 10 VU9P U50 U200 KCU1500 VU9P
Arria 10
GX 1150 Virtex-7 VU9P U200 KCU1500 VU9P U200

Freq. (MHz) 150 200 180 100 220 200 200 200 150 180 220 200 200 200
DSPs 2160 522 5632 4740 3560 5218 6781 1518 2160 5694 4496 5218 6781 6781

On-Chip Mem.
(MB) 4.14 2.53 30.98 (16b) 5.37 5.47 7.40 9.28 5.77 (16b) 4.14 37.15 6.78 6.88 8.72 8.55

Power (W) 10.87 8.18 - - - 10.59 11.81 - 10.65 - - 10.71 15.98 15.98

Latency (ms) 30.64 31.25 6.46
-

(922 GOP/s)
-

(2160 GOP/s)
3.41

(3247 GOP/s)
2.77

(4312 GOP/s) 32.00 80.45 13.26
-

(5415 GOP/s)
8.39

(4045 GOP/s)
6.80

(5137 GOP/s)
5.96

(6327 GOP/s)
Energy Efficiency

(image/s/W)2 4.00 3.91 - - - 27.69 30.57 - 1.56 - - 11.13 9.20 10.49

On-Chip Mem.
Efficiency

(image/s/MB)2
10.52 12.65 11.10

-
(41.503)

-
(42.30)

39.63
(52.99)

38.90
(56.12) 10.82 4.01 2.26

-
(31.27 )

17.32
(25.32 )

16.86
(25.37 )

19.62
(31.87 )

Model GoogleNet DenseNet BERT-base (512 Tokens) [50]
Category Manual ADA Manual ADA Manual ADA
Method [51] Amoeba LCMM HCG [52] [17] HCG FET-OPU [53] CSTrans-OPU [54] [55] HCG

Year 2023 2024 2019 2024 2020 2019 2024 2023 2024 2024 2024
FPGA U50 Arria 10 VU9P KCU1500 VU9P VX690T 4×VCU118 KCU1500 VU9P U200 U280 U280 KCU1500 VU9P

Freq. (MHz) 200 200 180 200 200 200 200 200 200 200 200 245 200 200
DSPs 4100 522 5694 5234 6797 - 20492 5226 6789 4864 3840 1780 5130 6669

On-Chip Mem.
(MB) 15.45 2.53 38.05 6.21 7.30 0.67 20.52 (16b) 5.90 7.10 5.96 6.49 5.71 3.84 4.35

Power (W) 25.99 8.44 - 21.37 15.90 8.65 120.00 10.60 15.98 7.38 8.79 - 11.90 16.64
Latency (ms) 3.58 11.77 4.65 4.39 3.77 55.12 4.10 4.77 4.00 27.28 28.92 26.00 33.26 23.55

Energy Efficiency
(image/s/W) 10.74 10.06 - 10.65 16.68 2.10 2.03 19.78 15.64 4.97 3.92 - 2.52 2.55

On-Chip Mem.
Efficiency

(image/s/MB)
18.08 33.59 6.28 36.68 36.34 26.98 23.77 35.53 35.21 6.15 5.33 5.50 7.83 9.76

1 The default data precision is 8-bit, and the results using 16-bit are specially marked.
2 To eliminate the effect of clock rate, latencies are normalized to operate with 200 MHz when calculating the on-chip memory and energy efficiency.
3 When comparing on-chip memory efficiency with SushiAccel and PipeFuser, the latency of a single image is calculated by the division between

total operations of the model and the throughput (GOP/s).

TABLE IV
COMPARISON WITH EXISTING METHODS FOR IRREGULARLY CONNECTED

DNNS.

Model Design FPGA Freq.
(MHz) DSP Latency

(ms)
On-Chip

Mem. (MB)

RandWire
RWNN [23] U50 200 4648 16.60 15.68
HCG KCU1500 200 4929 9.99 6.06
HCG VU9P 200 4929 10.00 5.87

TABLE V
LATENCY COMPARISON WITH CPU AND GPU.

Model Device Freq. Latency (ms)

AmoebaNet
Intel Xeon E5-2620 2.10 GHz 296.18
Nvidia TITAN XP 1.8 GHz 62.96
KCU1500 200 MHz 25.45

E. Comparison with SOTA Methods

This section compares HCG with existing SOTA methods
for both regularly and irregularly connected DNNs. Specifi-
cally, for regularly connected DNNs, HCG is compared with
both manually designed accelerators and other existing ADA
methods. For irregularly connected DNNs, which are ignored
by all of existing ADA methods, we compare HCG with
manually designed accelerators or general-purpose processors
such as CPU and GPU.

Table III shows the results for regularly connected DNNs.
As can be observed, HCG generally exhibits a competi-
tive latency when compared with manually designed accel-
erators for all DNNs. Specifically, for ResNet-50, ResNet-
152 and DenseNet, HCG with both KCU1500 and VU9P
achieve shorter latency than manually designed accelerators.
For GoogleNet and BERT-base, HCG has longer latency

than those manually designed accelerators with higher-end
FPGAs in some cases. For example, HCG with KCU1500 is
slower than FET-OPU [53] on BERT-base [50]. However, the
latency is decreased when HCG uses VU9P as the backend,
where FET-OPU is 16% slower. Moreover, evaluated by the
aforementioned on-chip memory efficiency metric, our HCG
with KCU1500 outperforms manually designed accelerators
by an average of 2.00 times across all compared DNNs. With
VU9P, HCG outperforms manually designed accelerators by
an average of 2.13 times in on-chip memory efficiency.

Compared with existing ADA methods, HCG achieves
competitive latency with less on-chip memory. Compared with
LCMM [3], HCG with KCU1500 not only has shorter latency
but also uses 5 times less on-chip memory for both ResNet-152
and GoogleNet. Moreover, when HCG uses the same FPGA as
LCMM, HCG achieves lower latency with 2 to 3 times less on-
chip memory than LCMM. Furthermore, throughput (GOP/s)
is adopted for the estimation of latency when compared with
SushiAccel [47] and PipeFuser [48], since these two works
report throughput as speed metric. When evaluating through-
put, images of a batch size are pipelined through accelerators,
resulting in time overlaps between batched image processing.
Although HCG mainly optimizes the latency of a single image,
it also supports this batched image processing mechanism. For
fairness of comparison, we directly set the batch size to 8
and evaluate the throughput. Specifically, for ResNet-50, HCG
with KCU1500 and VU9P provides higher throughput than
PipeFuser ( with Alveo U200) and SushiAccel (with Alveo
U50). Evaluated by on-chip memory efficiency, HCG with
KCU1500 and VU9P respectively outperforms SushiAccel by
28% and 35% and outperforms PipeFuser by 25% and 33%.
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For ResNet-152, when HCG uses the same FPGA (Alveo
U200) as PipeFuser, it achieves higher throughput and on-chip
memory efficiency. For DenseNet, HCG achieves competitive
latency with only one VU9P compared to the method in [17]
with four VU9Ps. For BERT-base, HCG with KCU1500 pro-
vides a competitive latency with the method in [55] with Alveo
U280. However, HCG only uses 67% on-chip memory of the
method in [55], resulting in a 43% higher on-chip memory
efficiency.

As shown in Table III, HCG achieves higher energy ef-
ficiency than existing methods for ResNet-50, ResNet-152,
GoogleNet, and DenseNet. For the Transformer-based DNN
BERT-base, however, FET-OPU and CSTrans-OPU exhibit
higher energy efficiency. These two works, which are de-
signed specifically for Transformer-based models, enhance
DSP utilization and reduce latencies by leveraging specialized
intra-PU designs. Enhancing DSP utilization helps reduce the
energy consumed by DSP arrays, while reducing latencies
directly boosts the energy efficiency metric. HCG aims to
provide a general method applicable to various DNNs, in-
cluding Transformer-based models. It focuses on inter-PU
optimization, which is orthogonal to the intra-PU optimiza-
tions of FET-OPU and CSTrans-OPU. Nevertheless, HCG still
achieves acceptable energy efficiency, especially considering
the substantial computation requirements of BERT-base.

For irregularly connected DNNs, we only find a manu-
ally designed accelerator called RWNN [23] for RandWire.
RWNN uses the Alveo U50 as the backend platform, which is
dedicated to machine learning applications. The 8 GB HBM
memory equipped on Alveo U50 can reach a bandwidth of
201 GB/s, far exceeding the DDR4 of KCU1500 and VU9P.
Hence, to further verify the effectiveness of HCG, we also
compare HCG (on KCU1500 and VU9P) with RWNN (on
Alveo U50). The results are shown in Table IV. We can find
that although the comparison is unfair for HCG, HCG is not
only 1.6× faster in latency but also uses 2.5× fewer on-chip
memory compared with RWNN.

Since AmoebaNet has not been implemented on FPGAs
before, we compare the latency of HCG with KCU1500 to
that of CPU and GPU, which is shown in Table V. Please
note that HCG mainly considers the inference scenario, as
almost all related works [2, 3, 4, 5, 6, 7]. In the inference
scenario, the batch size of input samples is always set to one,
and data is always reduced to relatively low precision. Hence,
we compare the latency when the batch size is set to one.
For the data precision, CPU and HCG use 8-bit precision for
both activation and weight, while GPU uses full precision (32-
bit) since PyTorch does not support 8-bit inference on TITAN
XP GPU. Table V shows that HCG with KCU1500 is 11.6×
and 2.5× faster in latency compared with CPU and GPU,
respectively.

F. Scalability

HCG demonstrates superior scalability, making it adapt-
able to a wide range of DNN architectures and FPGA plat-
forms. Firstly, Table II shows that HCG exhibits scalability
across various DNN architectures. As observed, HCG exhibits

outstanding performance for both regularly and irregularly
connected DNNs. Secondly, Table II also highlights HCG’s
scalability in a similar DNN architecture with different weight
scales. For example, HCG provides stable latencies for ResNet
with three scales of weights (ResNet-50, ResNet-101, and
ResNet-152), where latencies scale linearly with the number of
weights. Moreover, there are mainly two requirements in the
HCG exploration algorithm, including the information (such
as kernel size, input channel, etc.) about each layer and its
interconnection. Since DNNs are typically stacked by layers,
these two requirements are satisfied for almost all DNNs, al-
lowing HCG to be easily extended to other DNN architectures.
Thirdly, Table III validates HCG’s scalability across different
FPGA platforms (KCU1500, VU9P, and U200), demonstrating
HCG’s adaptability to FPGA platforms with varying resource
constraints. Furthermore, the HCG exploration algorithm is
mainly constrained by resource constraints of a target FPGA,
including the total number of on-chip memory, DSPs, off-chip
memory, and LUTs. Given that these resources account for the
primary differences between FPGA platforms, HCG can be
applied to other FPGAs by adjusting the resource constraints
accordingly.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel method called HCG for
ADA without inter-PU templates. Experiments show that our
HCG method can achieve competitive latency with much less
on-chip memory, compared with existing SOTA methods. In
addition, HCG is orthogonal to existing works on intra-PU
architecture optimization. Combining both inter-PU and intra-
PU architecture optimization together will be pursued in our
future work.
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