Tutorial 3
Selection:
Adversary Arguments
What is an Adversary?

- A method for obtaining worst case lower bounds
- A second algorithm which intercepts access to data structures
- Constructs the input data only as needed
- Attempts to make original algorithm work as hard as possible
- Analyze Adversary to obtain lower bound
Important Restriction

- Although data is created dynamically, it must return consistent results.
Adversary Lower Bound Technique

- Devise a strategy to construct a worst case input for a correct algorithm.
 - The algorithm is known, i.e. Insertion sort
 - The algorithm in unknown, i.e. comparison-based sorting algorithm

- Guessing Game:
 $\mathbb{Z}_{100} = \{0, 1, \ldots, 99\}$, Guess what number in \mathbb{Z}_{100} I have in mind?
 - $|L_0| = 100$, $|L_1| \geq 50$, $|L_2| \geq 25$, $|L_3| \geq 13$, $|L_4| \geq 7$, $|L_5| \geq 4$, $|L_6| \geq 2$, $|L_7| \geq 1$
 - Worst case lower bound: $\left\lceil \log_2 100 \right\rceil = 7$
Design against an adversary

- A good technique for solving comparison-based problem efficiently.
- Should choose comparisons for which both answers give the same amount of information.
- Keep the decision tree as balance as possible.
- Binary search, merge sort, finding both max and min, finding second-largest.
(1) Finding both max and min

Finding max and min

- (1) pair up comparison: $n/2$
- (2) find largest of the winners: $n/2-1$, find smallest of the losers: $n/2-1$
- (3) at least $3n/2-2$ comparisons
(2) Finding second-largest key

- Finding second-largest key
 - (1) finding the max of n keys: n-1
 - (2) finding the largest of keys directly lose to max: \([\lg n]-1\)
 - (3) at least n+\([\lg n]-2\)

- implementation: heap
(3) Finding median

- Selection (Finding median)
 - Divided and conquer approach
- Find a “good” partition?
 - in finding pivot for Quick sort, we have
 - \(T(n) = T(q) + T(n-q-1) + \Theta(n) \)
 - (1) fixed strategy
 - (2) random strategy
- for selection
 - \(T(n) = T(\max(q, n-q-1)) + \Theta(n) \)
 - (1) fixed strategy: \(\Theta(n^2) \) in the worst case
 - (2) random strategy: [CLRS P189] expected \(\Theta(n) \)
 - (3) group 5 strategy: \(\Theta(n) \) in the worst case
- lower bound (textbook P240): \(3n/2-3/2, \ (2n,3n) \)
Questions

Why select 5 keys as a group? can it be 3,4,6,7,...?
Yes, we can choose c keys as a group, but we must have c>=5 to run in linear time.
(Explain why c<5 is not in linear time?)

Finding the median of 5 elements?
(6 comparisons)

Sorting 5 elements?
(7 comparisons)
Counting the Number of Comparisons

- Assuming \(n=5(2r+1) \) for all calls of \textit{select}.

\[
W(n) \leq 6\left(\frac{n}{5}\right) + W\left(\frac{n}{5}\right) + 4r + W(7r + 2)
\]

- \textbf{Note:} \(r \) is about \(n/10 \), and \(0.7n+2 \) is about \(0.7n \), so

\[
W(n) \leq 1.6n + W(0.2n) + W(0.7n)
\]

\[
W(n)=1.6n+1.6*(0.9)n+1.6*(0.9)^2n+1.6*(0.9)^3n+\ldots=\theta(n)
\]
Example: Lower Bound for Comparison Sort

- Input: there n! different permutations
- The adversary D maintains a list L
- Adversary Strategy:
 - Initially L contains all n! permutations
 - When an algorithm compares ask a[i] < a[j]?
 - Let L1 be the permutation in L and a[i]<a[j]
 - Let L2 be the permutation in L and a[i] ≥ a[j]
 - If |L1| > |L2|, answer “yes”, and let L = L1
 - Else answer “no” and let L = L2
 - At least half of the permutations in L remain
 - The algorithm is done until |L| = 1
- So, the number of comparison is at least

\[
\lceil \log_2 (n!) \rceil \geq \left\lfloor \log_2 \left(\frac{n}{e} \right)^n \right\rfloor = \Omega(n \log n)
\]
Ex1: Majority element problem

A majority element in an array \(A \) of size \(N \) is an element that appears more than \(N/2 \) times. For example, the array
\[1,3,2,3,2,3,3 \]
has a majority element 3;
\[1,3,2,3,2,4 \]
has no majority element.
The majority element problem is to find the majority element in an array, output –1 is it does not have one.
Method 1: Counting the appearance times of each element
The time complexity is $O(n^2)$
Method 2

- (1) Sorting the array in $O(n \log n)$ time
- (2) Find the longest duplicated element in $O(n)$ time

Thus the complexity of the algorithm is $O(n \log n)$
Method 3: (linear solution)

Assume n is even, we find the candidate majority element as follows: we pair up element $A[2i-1]$ with $A[2i]$, for $i=1,2,\ldots,n/2$, for each pair, if two elements are equal, put the element into array B, else discard both of them. B is the candidate set, where $|B|\leq n/2$. We have the following claim.
Claim: if \(n \) is even, \(e \) is the majority element of \(A[1..n] \) and \(B \) is the elements which survived the above procedure, then \(B \) has a majority element which is equal to \(e \).

proof: Suppose that \(k \) is the number of pairs created by the above procedure, in which both elements are equal to \(e \). Suppose, further, that \(L \) is the number of pairs created by the procedure which contain unequal elements. Clearly, \(|B|=n/2-L \). Moreover, since \(e \) appears in \(A \) at least \(n/2+1 \) times it must hold that \(2k+L\geq n/2+1 \). This implies

\[
k \geq \frac{n}{2} - \frac{L}{2} + \frac{1}{2} \Rightarrow k \geq \frac{|B|}{2} + \frac{1}{2}
\]

Hence \(e \) is a majority element of \(B \).
If n is odd:

- If the first N-1 elements have a majority, then the status of the last element to be a candidate or not cannot change the fact.
- If no majority element emerged in the first N-1 elements, the last element could be a majority.
It is not hard to design an algorithm based on the above. We use `find_candidate` to find the candidate majority elements, and use `check_candidate` to verify it.

```c
int A[N]; // Set up the initial data of this array
int B[M]; // An extra space to store candidates, where M is at most N/2+1
int N = sizeof(A) / sizeof(A[0]);

int Majority( int A[], int N )
{
    int i, Number_of_Candidates = 0;

    // Check the base case of recursion
    if ( N <= 2 ) {
        for ( i = 0; i < N ; i++ )
            if ( Check_Candidate( A[i] ) == 1 ) return A[i];
        return 0;
    }

    // Compare two consecutive elements in array A
    for ( i = 0 ; i < N ; i += 2 )
    {
        if ( i+1 < N ) // Does the second element exist?
                B[Number_of_Candidate++] = A[i];
        if ( (N/2)*2 < N ) B[Number_of_Candidates++] = A[N-1];
    }

    return Majority( B, Number_of_Candidates );
}

int Check_Candidate( int Candidate )
{
    int i, Count=0;
    for ( i = 0 ; i < N ; i++ )
        if ( A[i] == Candidate )
            Count++;
    if ( Count > N/2 ) return 1;
    else return 0;
}
```
Analysis of Method 3:

- Time complexity:
 \[T(n) = T(n/2) + o(n), \text{ use Master Theorem, is O}(n) \]

- Space usage: O(n)
Ex2: Weighted Selection Problem (P246)

For n distinct elements $x_1, x_2, ..., x_n$
- Positive weights $w(x_1), w(x_2), ..., w(x_n)$
- Let $W = \sum_{i=1}^{n} w(x_i)$
- Let constant C, $0 < C \leq W$
- Find the number x_j so that

$$\sum_{x_i < x_j} w(x_i) < C$$

$$w(x_j) + \sum_{x_i < x_j} w(x_i) \geq C$$
Solution:

\[X = \{x_1, x_2, \ldots, x_n\}, \ W = \{w_1, w_2, \ldots, w_n\} \]

\[\text{wSelection}(X, C) \]

- \(a = \text{selectionMedian}(X) \) //runs in \(O(n) \)
- \(X_1 = \{x_i: x_i < a\} \) //runs in \(O(n) \)
- \(X_2 = \{x_i: x_i > a\} \)
- \(m = \sum_{x_i \in X_1} w(x_i) \)
- If \(m < C \) and \(m + w(a) > C \) then return \(a \)
- Else if \(m < C \) return \(\text{wSelection}(X_2, C-m-w(a)) \)
- Else return \(\text{wSelection}(X_1, C) \)

Analysis: \(T(n) = T(n/2) + o(n) \), use Master Theorem, is \(O(n) \)