
Improving Execution Concurrency of
Large-Scale Matrix Multiplication on
Distributed Data-Parallel Platforms

Rong Gu, Student Member, IEEE, Yun Tang, Student Member, IEEE, Chen Tian,

Hucheng Zhou, Guanru Li, Xudong Zheng, and Yihua Huang

Abstract—Matrix multiplication is a dominant but very time-consuming operation in many big data analytic applications. Thus its

performance optimization is an important and fundamental research issue. The performance of large-scale matrix multiplication on

distributed data-parallel platforms is determined by both computation and IO costs. For existing matrix multiplication execution

strategies, when the execution concurrency scales up above a threshold, their execution performance deteriorates quickly because the

increase of the IO cost outweighs the decrease of the computation cost. This paper presents a novel parallel execution strategy CRMM

(Concurrent Replication-based Matrix Multiplication) along with a parallel algorithm, Marlin, for large-scale matrix multiplication on

data-parallel platforms. The CRMM strategy exploits higher execution concurrency for sub-block matrix multiplication with the same IO

cost. To further improve the performance of Marlin, we also propose a number of novel system-level optimizations, including increasing

the concurrency of local data exchange by calling native library in batch, reducing the overhead of block matrix transformation, and

reducing disk heavy shuffle operations by exploiting the semantics of matrix computation. We have implemented Marlin as a library

along with a set of related matrix operations on Spark and also contributed Marlin to the open-source community. For large-sized matrix

multiplication, Marlin outperforms existing systems including Spark MLlib, SystemML and SciDB, with about 1:29� , 3:53� and 2:21�
speedup on average, respectively. The evaluation upon a real-world DNN workload also indicates that Marlin outperforms above

systems by about 12:8� , 5:1� and 27:2� speedup, respectively.

Index Terms—Parallel matrix multiplication, data-parallel algorithms, machine learning library

Ç

1 INTRODUCTION

MACHINE learning and data mining algorithms are criti-
cal for knowledge discovery from big data. Distrib-

uted data-parallel platforms, such as Hadoop MapReduce
[1], [2] and Spark [3], [4], provide friendly development
frameworks for users by automatically handling the under-
lying parallel computation details (e.g., task split and fail
over). As a result, a number of prevalent machine learning
and data mining algorithm libraries are developed on dis-
tributed data-parallel platforms [5], [6], [7]. Matrix compu-
tation, including matrix multiplication and factorization, is
the core of many big data machine learning and data mining
applications such as mining social networks, recommenda-
tion systems and natural language processing [8], [9], [10].
Therefore, many libraries or frameworks built on top of dis-
tributed data-parallel platforms, such as Spark MLlib [5]
and SystemML [7] on Spark, start to provide native matrix

computation interfaces. With these matrix abstractions, data
scientists can write imperative programs without needing
to worry about the underlying complicated details of dis-
tributed system implementations.

Among these matrix operations, multiplication is a very
important but time-consuming computation required by
many machine learning algorithms such as page rank, logis-
tic regression and Deep Neural Network (DNN) [9]. Take
the DNN algorithm as an example, 95 percent of GPU com-
putation and 89 percent of CPU computation are occupied
by matrix multiplications [11]. Also, many matrix factoriza-
tion operations can be approximated by multiplication
operations [7]. Thus, matrix multiplication is the major
focus of performance optimization for many big data ana-
lytical algorithms or applications. In fact, large-scale matrix
multiplication can hardly be handled by the single-node
matrix computation libraries due to hardware resource limi-
tation. Therefore, there is an ever-increasing need for scal-
able and efficient matrix computation systems.

The performance of a large-scale matrix multiplication
execution strategy is basically determined by the total time
costs of its computation and IO on distributed data-parallel
platforms. A typical process of most large-scale matrix mul-
tiplication execution strategies works as follows: 1) each
operand matrix is split to many sub-matrices and distrib-
uted to many cores; 2) partial multiplications are concur-
rently performed on different cores; 3) the intermediate

� R.Gu, Y. Tang, C. Tian, andY.Huang are with State Key Laboratory forNovel
Software Technology, NanjingUniversity, Jiangsu Sheng 210000, China.
E-mail: {gurong, tianchen, yhuang}@nju.edu.cn, tangyun@smail.nju.edu.cn.

� H. Zhou, G. Li, and X. Zheng are with Microsoft Research, Beijing
100084, China. E-mail: {guanrl, xuzhen, huzho}@microsoft.com.

Manuscript received 8 July 2016; revised 17 Jan. 2017; accepted 1 Mar. 2017.
Date of publication 22 Mar. 2017; date of current version 9 Aug. 2017.
Recommended for acceptance by X. Gu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2686384

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017 2539

1045-9219� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



outputs are aggregated to generate the final result matrix.
Generally speaking, the more cores that are used, the higher
parallelism the computation can be achieved, but also the
more IO traffic are introduced among cores. Here the IO
bottleneck can be either disk access or network commun-
ication, or both. For a given execution strategy, the compu-
tation cost is a decreasing function of the execution
concurrency, while the IO cost is an increasing function of
the execution concurrency.

The performance of existing matrix multiplication execu-
tion strategies deteriorate quickly when execution concur-
rency scales up above a threshold. To parallelize large-scale
matrix multiplication, Spark MLlib and SystemML adopt
the Replication-based Matrix Multiplication (RMM) and Cross-
Product Matrix Multiplication (CPMM) [10] execution strate-
gies. Both RMM and CPMM have a relatively large IO cost.
As a result, when increasing the number of cores, the
increase of the IO cost may quickly outweigh the decrease
of the computation cost (analysis details in Section 2.2).

In this paper, we present a novel parallel execution strat-
egy along with a parallel algorithm, Marlin, for large-scale
matrix multiplication on data-parallel platforms. Marlin
exploits concurrency from perspectives of computation, IO
and local data exchange. For the matrix multiplication exe-
cution strategy, we propose Concurrent Replication-based
Matrix Multiplication (CRMM) strategy. Compared with
existing execution strategies, CRMM significantly reduces
the IO cost by exploiting execution concurrency of two oper-
and matrices in all three dimensions. Consequently, CRMM
can exploit higher concurrency for sub-block matrix multi-
plication with the same IO cost to reduce the overall execu-
tion cost. We also prove that the existing RMM and CPMM
strategies are actually two special cases of CRMM.

Furthermore, we propose a number of novel system-level
optimizations to further improve the performance of Mar-
lin. First, when interfacing with native libraries on a node,
the Batch Calling Native Library (BCNL) strategy is used to
increase the concurrency of data exchange and amortize the
overhead of system calls. Second, instead of using the ineffi-
cient coordination matrix transformation, we propose
the Slicing Matrix Transformation (SMT) strategy to reduce
the overhead of block matrix transformation. Third, instead
of naively using the general shuffle mechanism provided by
data-parallel platforms, Marlin adopts the Light-Shuffle sub-
Matrix co-Grouping (LSMG) strategy, which reduces disk
heavy shuffle operations by half by exploiting the semantics
of matrix computation. Lastly, we use an existing heuristic
algorithm to choose the appropriate partitioning strategy
for various matrix scales from real-world scenarios.

We have implemented Marlin1 as a library along with a
set of related matrix operations on the widely-used distrib-
uted data-parallel system Spark. Marlin provides a group of
easy-to-use matrix APIs to support easy programming for
matrix model-based machine learning algorithms. With
Marlin’s APIs, an end-to-end DNN training algorithm can
be programmed in less than 30 lines of code. Note that the
execution strategy and optimizations proposed in this paper
can also be applied to other distributed data-parallel plat-
forms such as Apache Flink [12], Dryad [13] etc.

We have evaluated the performance of Marlin on a clus-
ter of 20 physical server nodes with 320 cores in total, by
comparing it with three cutting-edge alternatives: the built-
in matrix computation library of Spark MLlib, the matrix-
based programming platform SystemML [7], [10], [14] that
uses Spark as the underlying execution engine, and the
widely-used matrix library provided by SciDB [15]. Experi-
mental results over various benchmarks show that for
large-sized matrix multiplication, Marlin outperforms
Spark MLlib, SystemML and SciDB with about 1:29� , 3:53�
and 2:21� speedup, respectively; for multiplication of large
matrix by small matrix, it achieves 2:68� , 1:72� and 11:2�
speedup, respectively. The evaluation upon a real-world
DNN workload also indicates that Marlin outperforms
them by about 12:8� , 5:1� and 27:2� speedup, respectively.

The rest of paper is organized as follows. Section 2 intro-
duces the background of this research. Section 3 presents the
CRMM strategy in details. Section 4 discusses several impor-
tant system-level optimizations. Section 5 provides the
design and interface details of the framework. The perfor-
mance evaluation results are presented in Section 6. We dis-
cuss related work in Section 7. Section 8 concludes the paper.

2 BACKGROUND

2.1 Matrix Multiplication for Machine Learning

Matrix is an important mathematic model to represent many
machine learning and data analytic algorithms or applica-
tions, such as page rank, logistic regression and DNN [9]. Fur-
ther, matrix multiplication is a frequently-used but very time-
consuming operation for many such algorithms. We take the
DNN training as an example. A three-layer fully-connected
neural network training process expressed by Marlin API2 is
present in Fig. 1. The goal of this algorithm is to optimize the
model weights W (line 9) and V (line 10) among these three

Fig. 1. A three-layer fully-connected DNN training program written with
Marlin APIs

1. Marlin is now available at https://github.com/PasaLab/marlin 2. Details of Marline programming API are presented in Section 5.

2540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017



layers. All input, W and V are represented as matrices with
sizes input-num � layer1, layer1 � layer2 and layer2 �
layer3, respectively. The training data are fed to the neural
network batch by batch during each training iteration. At the
beginning, The MNIST [16] training data and labels are
generated by loadMnistImage() (line 12). Then, during
each training iteration, the mini-batch data (input) is pre-
pared by loadBatches() (line 18). There are two phases of
computation in each iteration during the model training: the
feed forward phase (line 19-22) starting from bottom layer,
and the back propagate phase (line 24-25) starting from top
layer. The activation function activate and its derivation
dActivate function are adopted to calculate the deltas of
model weights during these two computation phases. Lastly,
the model weights are updated by subtracting the trained
model deltas in each iteration (line 27, 28).

The computation of the training process is dominated by
matrix multiplication (line 19, 21, 25, 27 and 28). For such a
DNN program, it has been reported that 95 percent of GPU
computation and 89 percent of CPU computation are occu-
pied by matrix multiplications alone [11].

Therefore, optimizing the performance of large-scale
matrix multiplication becomes a very important and funda-
mental research issue for many big data analytic applica-
tions. For this reason, similar to related works [17], [18], this
paper focuses on optimizing large-scale matrix multiplica-
tion operation by utilizing distributed data-parallel comput-
ing models and platforms.

2.2 Distributed Matrix Multiplication Strategies

Large scale matrix multiplication has two categories: small
matrix multiplying large matrix, and two large matrices mul-
tiply with each other. For small matrix multiplying large
matrix, the commonly-used execution strategy is Broadcast
MM (Broadcast Matrix Multiplication), or MapMM (Map-
side Matrix Multiplication) [7], [10], which broadcasts the
small matrix to each computing node with one blocked sub-
matrix of the large matrix. We also adopt the BroadcastMM
strategy for this case in our design. In this paper, we focus on
optimizing the execution strategy of two-large-matrix multiplica-
tion on distributed data-parallel platforms.

As shown in Fig. 2, to perform parallel execution on top
of a parallel computation platform, a blocking strategy is
used to split a large matrix to smaller pieces (i.e., sub-
matrix). Consider two matrices A and B, the goal of a block-
ing strategy is to split A and B into sub-matrices of
Mb � Kb, Kb � Nb blocks respectively.3

An execution strategy for large-scale matrix multiplica-
tion is responsible for scheduling the execution workflow of
the blocked sub-matrices on the underlying parallel com-
puting platforms. For an existing blocking scheme of a
matrix multiplication, different execution strategies can
have different performance. On the other hand, for a spe-
cific execution strategy, we can also derive the optimized
blocking scheme if we want to use all available cores
simultaneously.

There exist two widely-used large-matrix multiplication
execution strategies on distributed data-parallel plat-
forms [10], [14]: Replication-based Matrix Multiplication
(RMM) and Cross-Product Matrix Multiplication (CPMM).
Their detailed execution workflows are illustrated in Fig. 3a
and 3b respectively [10]. Consider two matrices A and B
split into sub-matrices with Mb � Kb blocks in A and
Kb � Nb blocks in B. Then, the matrix multiplication can be
represented as the blocked format: Ci;j ¼

P
Ai;kBk;j; i <

Mb; k < Kb; j < Nb.
RMM is used in both SystemML [7] and Spark MLlib [5].

As shown in Fig. 3a, there exists only one shuffle phase in
RMM. In order to compute one result block Ci;j, the reduce
stage should obtain all the required blocks from A and B.
Also, Ai;k and Bk;j have to be replicated together to generate
the multiplication result block Ci;j. In the join stage of
RMM, each block of A and B is replicated Nb and Mb times
respectively. As a result, the size of shuffled data during
this phase is NbjAj þ MbjBj. In the reduce stage, Mb � Nb

tasks can run concurrently to execute sub-block multiplica-
tions. Among the Mb � Nb tasks, each task will execute Kb

times of matrix multiplication and then the intermediate
results are aggregated to generate the final result block Ci;j.
Thus, for a given execution parallelism degree Par¼ Mb � Nb¼ Mb � Nb in
RMM, the size of data written to/read from disk is
NbjAj þ MbjBjNbjAj þ MbjBj, which is time-consuming whenParis large.

CPMM is one of the execution strategies adopted by Sys-
temML [7]. As shown in Fig. 3b, different from RMM,
CPMM does not need to replicate data of matrix A and B
multiple times. Instead, it implements a cross-product strat-
egy that requires one join and one shuffle phase. In the join
phase, the input matrices A and B are grouped into the input
blocks Ai;ks and Bk;js by the joint key k and then written to
disk. The size of shuffled data during this phase is jAj þ j Bj.
Then the next map stage performs a cross product to com-
pute Pk

i;j ¼ Ai;kBk;j. As blocks are grouped by joint key k,
there are Kb sub-block multiplication tasks running in paral-
lel at most. In the shuffle phase, these intermediate results
are then written to disk by grouping all the Pk

i;js by the key
ði; jÞ. The size of shuffled data during this phase is KbjCj.
Finally in the reduce stage, the reduceByKey transformation
computes Ci;j ¼

P
Pk
i;j. It is clear that for a given execution par-

allelism degree Par ¼ Kb¼ Kb in CPMM, the size of shuffled data for
aggregation isKbjCjKbjCj which is huge when Par is large.

To demonstrate the relationship between the parallelism
degree and shuffle size of different execution strategies, we
conduct an empirical experiment on a 12-node cluster with
16 cores each node, i.e., totally 192 cores in the cluster. The
maximal degree of task execution parallelism is also 192.
For simplicity, we take the input matrices as the same size
so that the shuffle data size can be represented as the multi-
ple size of matrix A. In Fig. 4 we can see that the shuffle

Fig. 2. The workflow of distributed matrix multiplication.

3. Note that b is not a variable, it means that matrices A and B are
represented in the blocked format after splitting.

GU ET AL.: IMPROVING EXECUTION CONCURRENCY OF LARGE-SCALE MATRIX MULTIPLICATION ON DISTRIBUTED DATA-PARALLEL... 2541



data size grows very fast with the increase of the parallelism
degrees for CPMM and RMM strategies. In the next section,
we will demonstrate that when increasing the number of
cores for RMM and CPMM, the increase of the IO cost
quickly outweighs the decrease of the computation cost.

3 CRMM EXECUTION STRATEGY

For two-large-matrix multiplication, we present our key
optimization called CRMM execution strategy that
increases the sub-matrix multiplication concurrency and
reduces the IO cost in the entire workflow. Compared with
RMM and CPMM (Section 2), CRMM has less computa-
tion cost (due to higher concurrency) with a fixed IO cost.
As shown in Fig. 4, CRMM has less IO cost for a fixed sub-
matrix multiplication concurrency.

Observation. Consider two input matrices A and B split
into sub-matrices with Mb � Kb blocks in A and Kb � Nb

blocks in B. From analysis in Section 2.2 and Fig. 4, RMM
and CPMM incur a lot of shuffle IO when increasing the
degree of execution parallelism, which may result in poor
overall performance. We summarize the theoretical

performance analysis of these matrix execution strategies in
Table 1.

The observation is that: for a given Par objective (i.e., the
number of concurrent cores), the IO cost of RMM is deter-
mined by Mb and Nb, given the constraint of Par¼ Mb � Nb¼ Mb � Nb.
We can safely assume that its IO cost is proportional to
Par

1
2. Similarly, the cost of CPMM is determined by Kb,

given the constraint of Par ¼ Kb¼ Kb, and its IO cost is propor-
tional to Par. This explains why compared with RMM,
CPMM is inferior in concurrency: its IO cost quickly
increases along with Par.

Solution. To overcome the limitations of RMM and
CPMM, we propose an optimized matrix multiplication
strategy called CRMM. The execution strategy of CRMM is
illustrated in Fig. 5. It extends from RMM but achieves
higher concurrency for sub-block matrix multiplication. The
concurrency of the two operand matrices in all three dimen-
sions are exploited. In the join stage of CRMM, each block
of A and B is replicated Nb and Mb times respectively. How-
ever, different from RMM, CRMM does not co-group all
related Ai;k and Bk;j to generate the result block Ci;j in the
first stage. This way, the computation of each Pk

i;j ¼ Ai;kBk;j

can be executed simultaneously, which means Mb � Kb� Nb

tasks can run concurrently to execute sub-block multiplica-
tions. The size of shuffled data during this phase is the
same as RMM , that is NbjAj þ MbjBj. Then, similar to
CPMM, we need another shuffle phase to aggregate these
intermediate results Pk

i;j. During this stage, all the Pk
i;js are

grouped together by the key ði; jÞ. Thus, the size of shuffled
data during this phase is KbjCj. Finally in the reduce
stage, the reduceByKey transformation computes
Ci;j ¼

P
Pk
i;j.

Analysis. We also present the theoretical analysis for
CRMM in Table 1. As illustrated in Table 1, the execution
concurrency of CRMM can reach Mb � Kb � Nb. As a result,
its IO cost is proportional to Par

1
3. Compared with RMM

and CPMM,CRMM significantly reduces the IO cost by
exploiting concurrency of two operand matrices in all three
dimensions. For example, when Par¼ 212 (i.e., around 4,000
cores), the shuffle size for CPMM and RMM are Oð212Þand
Oð26Þrespectively; while it is only Oð24Þfor CRMM.

Additionally, we find that CRMM is equivalent to
CPMM or RMM in two special cases. On one hand, if the

Fig. 3. The execution strategies of matrix multiplication on distributed data-parallel systems.

Fig. 4. An intuitive comparison of overall shuffle data size versus concur-
rency among different matrix multiplication strategies (given 192 cores
in total and input matrices are the same size).

2542 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017



dimension k is extremely larger than m and n, i.e., a very
flattened matrix multiplying a tall and thin matrix, the
blocked format of Mb � Kb � Nb can be derived to
1 � Kb � 1. In this case, CRMM is equivalent to CPMM
theoretically. Actually, this case happens twice in the
pseudo-code of DNN (line 27 and 28 in Fig. 1). It is obvi-
ous that as the final result matrix is really smaller than
input matrices, using the RMM strategy to gather all
related sub-blocks in one single task would result in poor
performance. On the other hand, if the dimension k is
extremely smaller than m and n, the blocked format of
Mb � Kb � Nb can be derived to Mb � 1 � Nb. Under this
situation, CRMM is equivalent to RMM in theory and
thus another shuffle phase can be avoided.

Verification. To prove our deduction of these three strate-
gies, we test the overall performance on a 12-node Spark
cluster (with the same number of cores as in Fig. 4) with the
same size of input matrices as ð30000 � 30000Þ. For the
RMM strategy, we let Mb equal Nb, and increase them from
4 � 4 (i.e., using 16 cores) to 13 � 13 (i.e., using 169 cores).
For the CPMM strategy, we simply increase the value of
Kb. For the CRMM strategy, we let Mb equal Nb equals Kb,
and increase them from 3 � 3 � 3 (i.e., using 27 cores) to
6 � 5 � 6 (i.e., using 180 cores).

The experimental results are shown in Fig. 6. Consistent
with our analysis, to achieve the best performance, RMM
should only use 81 cores instead of all the cores. CPMM is
even worse: the threshold value is around 20-25 cores. As a
comparison, the execution time of CRMM keeps decreasing
together with the increase of the number of cores; due to the
physical resource limitations, we cannot explore the situa-
tion of more cores, but we expect that there also exists a
threshold value for CRMM. Comparing the best perfor-
mance among the three strategies, we can see that the execu-
tion time of RMM is only half of that for CPMM, while the
execution time of CRMM is even 15 percent lower than that
for RMM .

4 SYSTEM-LEVEL OPTIMIZATIONS

In this section, we propose several system-level optimiza-
tions to further improve the matrix execution performance.
First, we introduce the Batch Calling Native Library (BCNL) to
improve the efficiency of native library calling by increasing
the concurrency of data exchange. Second, we elaborate
the Slicing Matrix Transformation (SMT) strategy to reduce
the overhead of block matrix transformation. Third, we pres-
ent the Light-Shuffle sub-Matrix co-Grouping (LSMG) optimi-
zation to reduce IO heavy shuffle operations by exploiting
the semantics of matrix computation (Section 4.3). Last, we
explain the existing heuristic algorithm that we adopt to
choose the appropriate partitioning strategy for various
matrix scales from real-world scenarios.

4.1 Batch Calling Native Library (BCNL)

Intuition. Matrix operation is computation-intensive. Thus,
instead of performing linear algebra computations on JVM,
many high-level matrix libraries, including Marlin and
Spark MLlib, offload the single-node CPU intensive opera-
tions to the high performance linear algebra computing
libraries, such as ATLAS [19], LAPACK [20] or Intel
MKL [21] via Java Native Interface (JNI). For example,
Spark MLlib provides API for multiplying large distributed
row-matrix by small matrix. It is executed with the broad-
cast strategy. When a row-matrix multiplies a local small
matrix, it invokes the native library to multiply each row
with the broadcasted matrix. Similarly, Marlin and Spark
MLlib adopt Breeze,4 a numerical processing library in
Scala, as the underlying library.

However, this may decrease the performance since
invoking native library will introduce extra overhead such
as Java object initialization and parameter passing. Perfor-
mance becomes even worse if there is only little computa-
tion, for example, vector addition or matrix-vector
multiplication. We conduct a group of comparison experi-
ments using one thread on a single computing node (the
hardware configuration described in Section 6.1) to verify
this. The first case, a 1000 � 1000 sized matrix multiplies
another 1000 � 1000 sized matrix. The second case, a
1 � 1000 sized vector multiplies a 1000 � 1000 sized matrix
for 1000 times. Both cases call the native library BLAS using
a CPU core for computation, and the first case can speed up
about 6:3� than the second case.

Solution. To increase the concurrency of data exchange,
Marlin presents a solution to efficiently use the native
library. Rather than call the native library row by row,
which is actually matrix-vector multiplication in BLAS-2
level, Marlin first initializes a matrix with row-based data

TABLE 1
Analysis of Different Matrix Multiplication Strategies (ParMeans the Number of Logical Cores Used)

Strategy shuffle data size in 1st phase parallelism in sub-block matrix
multiplication

shuffle data size in
2nd phase

parallelism in aggregating
intermediate blocks

RMM NbjAj þ MbjBj Mb � Nb ¼ Par None None
CPMM jAj þ j Bj Kb ¼ Par KbjCj Mb � Nb ¼ Par
CRMM NbjAj þ MbjBj Mb � Kb � Nb ¼ Par KbjCj Mb � Nb ¼ Par

Fig. 5. The CRMM execution strategy. 4. Breeze, https://github.com/scalanlp/breeze

GU ET AL.: IMPROVING EXECUTION CONCURRENCY OF LARGE-SCALE MATRIX MULTIPLICATION ON DISTRIBUTED DATA-PARALLEL... 2543



partition and then multiplies it with the broadcasted matrix
by calling the native BLAS-3 level native library. At the end,
it retrieves the result of each row by decomposing the result
matrix in row-wise. This changes a batch of matrix-vector
multiplication into a single matrix-matrix multiplication. As
a result, it improves the computation performance from the
BLAS-2 to BLAS-3 level.

Besides, Marlin also takes the advantage of column-major
property when invoking the native library BLAS. In Breeze,
matrix is stored in column-major, which is the same layout as
that in the native ATLAS. Thus, during initializing the tem-
porary matrix of each partition, vectors are directly assigned
to the matrix by the column-assignment, which leads to less
cache miss than the row-assignment method. Therefore, we
broadcast the transposition of the local matrix and place it in
the left side to multiply temporary matrix of each partition,
instead of using the normal processing method.

4.2 Slicing Matrix Transformation (SMT)

Similar to Spark MLlib, there are two types of matrix repre-
sentations in Marlin. When processing row-matrices multi-
plication, efficient transformation between row-matrix and
block-matrix is usually required. Spark MLlib transforms a
row-matrix to a block-matrix by emitting a large number of
ði; j; vÞcoordinates during the shuffle phase. This may bring
in a large number of intermediate objects with huge memory
footprint pressure and unnecessary data redundancy. More-
over, after such transformation, Spark MLlib treats each sub-
matrix as sparse matrix, which makes it hard to execute sub-
sequent matrix computation in the native library.

Marlin provides an efficient mechanism to shuffle sub-
vectors or sub-blocks to complete transformation between
these two types of representations. The key observation is
that some neighboring elements in the old representation
are also neighbors in the new representation. Instead of
encoding and sending every matric element one-by-one,
Marlin searches for sub-vectors or sub-blocks that are also
neighbors in the new representation; such a sub-vector or
sub-block is encoded and sent as a whole. This method is
also applied to row-block and block-block transformations.

4.3 Light-Shuffle Sub-Matrix Co-Grouping (LSMG)

Intuition. In any of the CPMM, RMM and CRMM strate-
gies, there always exists a join stage to co-group the corre-
sponding sub-matrices together for further computation.
Existing distributed matrix computation systems, such as

SystemML [7], HAMA [17] and Spark MLlib [5], co-group
sub-matrices by adopting the general shuffle mechanism as
illustrated in Fig. 7a. The general shuffle mechanism incurs
writing and reading a lot of small partition files. This results
in heavy random disk I/O operations. Besides, some shuffle
policies need to perform external sorting. These factors will
slow down the shuffle process. As analyzed in [22], the per-
formance of distributed data-parallel platforms, such as
Spark, suffers from heavy random I/O cost.

Solution. Therefore, we propose an optimization called
Light-Shuffle sub-Matrix co-Grouping (LSMG) to reduce the
heavy disk shuffle operations when co-grouping the sub-
matrices. This optimization takes advantage of the sub-
matrix correspondence information which is a pre-known
semantics in matrix computation. As shown in Fig. 7b, with
these semantics, each sub-matrix of A can directly fetch the
corresponding sub-matrix of B. This way, a large number of

Fig. 6. Tuning the performance of different matrix multiplication strategies on a 12-node Spark cluster.

Fig. 7. Light-Shuffle sub-Matrix co-Grouping optimization (LSMG).

2544 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017



the sub-matrices in B do not need to be written to and read
from disks.

Here, we take the Spark platform as an example to elabo-
rate the implementation of LSMG optimization. We reduce
shuffle data writing by optimizing the storage mechanism
of the block manager in Spark. First, we replicate and store
the sub-matrices on each computing node into its local block
manager memory. Second, we register the data information
back to the driver client. This way, one of the block-matrix
can avoid writing data to disk in the map side. Thus, this
optimization can reduce heavy disk shuffle operations by
half. To achieve load balance and high parallelism, another
group of sub-matrices are still distributed across the cluster
so that each task can be assigned with at least one sub-
matrix for multiplication.

During the join stage, the related sub-matrices are
grouped together according to their indexes by directly
reading the sub-matrices from the block managers with-
out disk reading incurred by the general shuffle mecha-
nism. We modified the Spark source code to support this
mechanism.

Algorithm 1. ApproachSelection(A,B,thres,env)

Input: A is a m � k matrix, B is a k � n matrix, thres is the
threshold of size, env is the physical cluster environ-
ment configurations

Output: C ¼ A � B, the output size is m � n
1 begin
2 if A:size < thres and B:size < thres and m � n < thres

then
3 Local A = collectðAÞ
4 Local B = collectðBÞ
5 C = Local MultiplicationðLocal A; Local BÞ
6 else if A:size < thres then
7 BC A = broadcastðAÞ
8 C = BroadcastMMðBC A;BÞ
9 else if B:size < thres then

10 BC B = broadcastðBÞ
11 C = BroadcastMMðA;BC BÞ
12 else
13 // get proper arguments to split matrices
14 conf = getBestSplitParameterðA:size; B:size; envÞ
15 // choose CRMM strategy to execute matrix

multiplication
16 C = Matrix MultiplicationðA;B; confÞ
17 return C

4.4 Adaptive Strategy Selection

As many studies have proved that different matrix multipli-
cation blocking strategies may result in very different per-
formance even for the same input matrices [10]. Therefore,
similar to SystemML [7], Marlin also implemented a heuris-
tic approach for selecting the appropriate execution strategy
as well as tuning the block-splitting number. Given two
matrices A � B, with the sizes m � k and k � n, respectively,
the detailed algorithm is described in Algorithm 1. An
empirical threshold thres is used to indicate the criteria
whether or not a matrix is large. If all matrices are
smaller than thres, we collect them to one single node to
execute matrix multiplication. Otherwise, if only one
matrix is smaller than thres, the broadcasting strategy is

used. If both input matrices are larger than thres, both
of them will be stored in a distributed way and executed
with the CRMM strategy.

5 SYSTEM DESIGN AND INTERFACE

We have implemented Marlin as a library along with a set of
related matrix operations on top of the Spark platform.
Fig. 8 illustrates the overview of system architecture, includ-
ing three layers: distributed matrix representation and APIs,
the Marlin runtime and the optimized Spark core. In this
section, we present the matrix computation representation
and APIs in Marlin.

A distributed matrix can be represented as either row-
matrix or block-matrix representation (the left part of
Fig. 2) [5]. These two representations are used in different
scenarios. Row-matrix is usually adopted to represent the
raw-based input files, e.g., labeled text training data, and
each row vector may represent a sample instance of training
data. Block-matrix is usually used to represent the interme-
diate and result matrices of distributed matrix computation.
Given a blocking strategy (see the next part), the representa-
tion of a matrix can be transformed to a new representation
required for computation efficiency (the middle part of
Fig. 2). In Spark MLlib and SystemML, the matrix represen-
tations are backed by the Spark RDD abstraction, the ele-
ment type of which is a key-value pair. Marlin also adopts
the same way.

Marlin defines a set of high-level APIs that cover basic
matrix computing operations, including matrix creation,
indexing, slicing operations, and some other advanced
operations such as the LU decomposition, the Choleskly
decomposition and matrix inverse. In addition to these
matrix-based operations, Marlin also provides some opera-
tions related to Spark to better utilize the underlying com-
puting platform, as well as APIs to load input data and to
save output data. An overview of these APIs can be found
in Table 2. Compared with Spark MLlib, Marlin currently
provides more matrix APIs that enable user to easily imple-
ment scalable complicated machine learning and data min-
ing algorithms or applications.

6 EVALUATION

We evaluated Marlin through a series of experiments on a
physical cluster with 21 nodes using diversified and repre-
sentative large-scale matrix computation benchmarks

Fig. 8. System architecture.

GU ET AL.: IMPROVING EXECUTION CONCURRENCY OF LARGE-SCALE MATRIX MULTIPLICATION ON DISTRIBUTED DATA-PARALLEL... 2545



(see Section 6.1). For comparison, we also evaluate the per-
formance of SystemML, Spark MLlib and SciDB under the
same circumstances. Besides that, we compare the perfor-
mance and memory usage of Marlin with SUMMA [23] in
ScaLAPACK [24] which is widely used in high performance
computing area. The experimental results are highlighted
as follows:

1) Compared with RMM or CPMM, the CRMM strat-
egy always achieves the best performance over vari-
ous matrix multiplication benchmarks (Section 6.2.1).

2) All the system-level optimizations, including BCNL,
SMT, LSMG and adaptive strategy selection proposed
in Marlin are effective for performance improvement
(Section 6.2.2).

3) For large-sized matrix multiplication, Marlin outper-
forms Spark MLlib, SystemML and SciDB with about
1:29� , 3:53� and 2:21� speedup, respectively. For
multiplication of large matrix by small matrix, Mar-
lin achieves 2:68� , 1:72� and 11:2� speedup
(Section 6.2.3) against them respectively.

4) For multiplication of large matrix by small matrix,
Marlin achieves 1:15� speedup against MPI. For two
large matrix multiplication, MPI outperforms Marlin
with 1:10� speedup. For two large matrices with
large common dimension, Marlin outperforms MPI
with about 5:22� speedup (Section 6.2.4).

5) Marlin has both near-linear data scalability and node
scalability (Section 6.3).

6) Evaluation on a realistic DNN workload indicates
that Marlin outperforms Spark MLlib, SystemML
and SciDB about 12:8� , 5:1� and 27:2� speedup,
respectively (Section 6.4).

6.1 Experiment Setup

Hardware. All the experiments are conducted on a physical
cluster with 21 nodes. Among them, one is reserved to work
as the master and all the other 20 nodes work as the workers
in Spark. Each node has two Xeon Quad 2.4 GHz processors
with 16 logical cores in total, 64 GB memory and two 1 TB
7200 RPM SATA hard disks. The nodes are connected with
the 1 Gb/s Ethernet.

Software. All the nodes run on Ext3 file system and the
Redhat 6 operating system with JDK 1.7 installed. The ver-
sion of the underlying Apache Spark used in Marlin is 2.0.2.
MLlib carried by Spark 2.0.2 is also installed for perfor-
mance comparison. The version of SystemML is 0.9, and the
version of SciDB is 14.8. We configure the 45 GB memory
size of each executor on the worker. The native linear alge-
bra library installed on each local node is BLAS 3.2.1 in
ATLAS version. The SUMMA in ScaLAPACK is imple-
mented by OpenMPI 1.8.8.

Benchmarks. Each group of experiments are conducted
over various sizes of matrices for different cases. Matrix
multiplication needs two input matrices, thus in notation
we represent a test case as m � k � n, which means the sizes
of the matrix A and B are m � k and k � n respectively and
k is called as common dimension. For example, matrix A
sized 100 � 10; 000 multiplying matrix B sized 10; 000 �
2; 000; 000 is represented as 100 � 10K � 2M.

6.2 Performance Analysis

6.2.1 Matrix Multiplication Execution Strategies

In this section, we evaluate the execution performance of the
execution strategies for large-scale matrix computation in
Marlin. They are the CPMM , RMM, and CRMM strategies
discussed in this paper. The execution graphs are shown in
Fig. 3a, 3b, 5 respectively. The experiments are conducted
on the same cluster environment with diversified and repre-
sentative benchmark cases. The matrices in each experiment
case are well-blocked according to Section 3, and the behav-
ior of each strategy is also in agreement with our previous
experiments on 12-node cluster. Case 1 to case 3 stand for
cases with large common dimension k, while case 4 to case
6 stand for general cases with three large dimensions. The
last three cases stand for special cases with two large dimen-
sions m and n. The experimental results are shown in Fig. 9.

Cases with Common Large Dimension kk. In case 1 to case 3,
the execution graphs of CRMM and CPMM are actually
the same. It can be seen that they both perform well in these
special cases, while RMM performs extremely poor. This is
because that to avoid another shuffle, RMM does not
exploit the execution concurrency of the k dimension, the
task execution parallelism of RMM is only Mb � Nb. More-
over, each task in RMM involves Kb times sub-matrix mul-
tiplication which are executed locally. In case 1-3, Mb and
Nb are small, while Kb is large. Thus, the execution concur-
rency of RMM is very low, while sub-matrix multiplication
workload inside each task is very heavy.

Cases with Three Large Dimensions. In the general cases
from 4 to 6, it can be seen that the CRMM strategy always
achieves better performance than the other two strategies in
these general cases. It achieves about 1:29� speedup against
RMM and 3:45� speedup against CPMM. This attributes to

TABLE 2
Matrix Operation APIs of Marlin

Category APIs

Matrix Creation onesDenVecMatrix(sc, rows,

columns)

randomDenVecMatrix(sc, rows,

columns)

loadMatrixFile(sc, path)

Element-wise
Operations

C = A + b

C = A .* B

C = A * b

C = A / b

Matrix-Matrix
Operations

C = A * B

C = A + B

Matrix Layout B = A.getSubMatrix(startRow,

endRow, startCol, endCol)

B = A.t

Other High Level
Operations

B = A.luDecompose()

B = A.choleskyDecompose()

B = A.inverse()

B = A.svd()

Matrix Storage A.saveToFileSystem(path)

A.saveSequenceFile(path)

Spark related
Operations

A.partitionBy(partitioner)

A.toDataFrame()

A.cache()

2546 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017



the three-dimension concurrency Con ¼ Mb � Kb � Nb for
CRMM. It balances the load of the shuffle, computation and
aggregation well.

Cases with Two Large Dimensions mm and nn. In the cases
from 7 to 9 , both CRMM and RMM both perform well
while CPMM performs extremely poor. This is because
CPMM generates too large intermediate matrices during
the second shuffle phase, which cannot be handled properly
in the cluster.

6.2.2 Evaluation of Optimization Measures

In this section, we evaluate the effectiveness of the proposed
system-level optimization methods in Marlin, including
Batch Calling Native Library (BCNL) optimization, Slicing
Matrix Transformation (SMT ) and Shuffle-Light sub-Matrix
co-Grouping (LSMG).

BCNL optimization. This optimization merges many vec-
tors into a local matrix. Then, this matrix multiplies the
broadcasted matrix by calling BLAS-3 native library. There-
fore, this optimization is designed for the BroadcastMM
case which is a small matrix multiplying a large matrix. In
BroadcastMM the large matrix does not need to be blocked,
thus the representation of the input matrices is row-matrix
which is usually loaded from the row-based text files. The
execution time in Table 3 shows that the BCNL optimiza-
tion can speed up the BroadcastMM around 3 times. Also,
the optimization works more effective for cases of larger
matrices. This is because that compared with the naive

implementation, BCNL can reduce the overheads of calling
native library. In conclusion, the BCNL optimization
method takes effect.

SMT and LSMG Optimizations. The SMT optimization
aims to efficiently transform row-matrix into block-matrix.
And, based on this, LSMG aims at improving sub-matrices
co-grouping efficiency. In addition, we also compare the
performance of Marlin with Spark MLlib which also sup-
ports row-matrix format representation. Experimental
results presented in Table 4 prove the effectiveness of the
SMT and LSMG optimizations. Besides, due to lacking effi-
cient transformation from row-matrix to block-matrix,
Spark MLlib has much poorer performance compared to
Marlin. Marlin outperforms Spark MLlib with about 6:78�
speedup in these cases.

Adaptive Strategy Selection Optimization. The goal of the
adaptive strategy selection proposed in Section 4.4 is to
choose the appropriate execution strategy among LocalMM,
BroadcastMM and CRMM according to the sizes of input
matrices. Table 5 demonstrates the performance of three exe-
cution strategies along with the execution strategy selected
by Algorithm 1 under various cases. The empirical thres is
set to 12,000,000 in our environment. For fair comparison,
the corresponding optimizations of each execution strategy
are used in this context. As shown in Table 5, when dimen-
sion sizes of both input matrices are smaller than thres, the
LocalMM achieves the best performance. When the dimen-
sion size of one input matrix is smaller than thres and the
dimension size of the other input matrix is larger than thres,
the BroadcastMM runs fastest. When the dimension sizes of
both two matrices are larger than thres, the CRMM strategy
runs with least time cost. The experimental results show that
the proposed adaptive selection strategy chooses the best
execution strategy in all input cases above.

Fig. 9. Performance comparison of various execution strategies (input
representation is block-matrix).

TABLE 3
Evaluation of Batch Calling Native Library (BCNL)
Optimization (Metric is Execution Time in Second,

Input Representation is Row-Matrix)

Matrix Size BroadcastMM BroadcastMM
with BCNL

Speedup

500K � 1K � 1K 10 8 1.25
500K � 10K � 1K 84 24 3.50
1M � 1K � 1K 14 9 1.56
1M � 10K � 1K 157 41 3.83
5M � 1K � 1K 48 21 2.29
5M � 10K � 1K 727 197 3.69

TABLE 4
Evaluation of Slicing Matrix Transformation (SMT) and Shuffle-
Light sub-Matrix co-Grouping (LSMG) Optimizations (Metric is

Execution Time in Second, NA Means Failed to Finish in
2,500 Seconds; Input Representation is Row-Matrix)

Matrix Size CRMM CRMM
with
SMT

CRMM with
SMT&LSMG

Spark
MLlib

20K � 20K � 20K 140 88 80 402
25K � 25K � 25K 339 139 131 926
30K � 30K � 30K 611 215 206 1702
35K � 35K � 35K 980 339 310 NA
40K � 40K � 40K 1881 634 453 NA

TABLE 5
Verification of Adaptive Strategy Selection Optimization

(Metric is Execution Time in Second)

Matrix Size Local Broadcast
MM

CRMM Adaptive Selected
Strategy

1K � 1K � 1K 1.4 6.0 2.3 LocalMM
2K � 2K � 2K 2.3 6.7 2.8 LocalMM
500K � 1K � 1K 185 8 40 BroadcastMM
500K � 10K � 1K 2079 22 208 BroadcastMM
10K � 10K � 10K 297 53 15 CRMM
20K � 20K � 20K 2227 207 60 CRMM

GU ET AL.: IMPROVING EXECUTION CONCURRENCY OF LARGE-SCALE MATRIX MULTIPLICATION ON DISTRIBUTED DATA-PARALLEL... 2547





[31] R. Analytics, “Rhadoop: A collection of five R packages that allow
users to manage and analyze data with Hadoop,” 2012. [Online].
Available: https://github.com/RevolutionAnalytics/RHadoop

[32] AMPLab, “SparkR (R on Spark),” 2016. [Online]. Available:
https://spark.apache.org/docs/latest/sparkr.html

[33] C.-C. Huang, et al., “Spartan: A distributed array framework
with smart tiling,” in Proc. 2015 USENIX Annu. Tech. Conf.,
2015, pp. 1–15.

[34] “Distarray documents,” 2016. [Online]. Available: http://docs.
enthought.com/distarray/

[35] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and
J. McPherson , “Ricardo: integrating r and hadoop,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2010, pp. 987–998.

[36] Z. Qian et al., “Madlinq: Large-scale distributed matrix computa-
tion for the cloud,” in Proc. 7th ACM Eur. Conf. Comput. Syst.,
2012, pp. 197–210.

[37] R. Gu, et al., “Efficient large scale distributed matrix computation
with spark,” in Proc. IEEE Int. Conf. Big Data, 2015, pp. 2327–2336.

[38] M. O. Karsavuran, K. Akbudak, and C. Aykanat, “Locality-aware
parallel sparse matrix-vector and matrix-transpose-vector multi-
plication on many-core processors,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 6, pp. 1713–1726, Jun. 2016.

[39] Y. Huangfu, J. Cao, H. Lu, and G. Liang, “Matrixmap: Program-
ming abstraction and implementation of matrix computation for
big data applications,” in Proc. IEEE 21st Int. Conf. Parallel Distrib.
Syst., 2015, pp. 19–28.

[40] R. Bosagh Zadeh, et al., “Matrix computations and optimization in
apache spark,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2016, pp. 31–38.

[41] “cuBLAS,” 2016. [Online]. Available: https://developer.nvidia.
com/cublas

[42] J. Canny and H. Zhao, “Bidmach: Large-scale learning with zero
memory allocation,” in Proc. BigLearning, NIPS Workshop, 2013,
pp. 1–8.

[43] P. Li, Y. Luo, N. Zhang, and Y. Cao, “Heterospark: A heteroge-
neous cpu/gpu spark platform for machine learning algorithms,”
in Proc. IEEE Int. Conf. Netw. Archit. Storage, 2015, pp. 347–348.

[44] E. Solomonik and J. Demmel, “Matrix multiplication on multidi-
mensional torus networks,” in Proc. High Perform. Comput. Com-
put. Sci., 2013, pp. 201–215.

[45] J. Demmel et al., “Communication-optimal parallel recursive rect-
angular matrix multiplication,” in Proc. IEEE 27th Int. Symp. Paral-
lel Distrib. Process., 2013, pp. 261–272.

[46] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz,
“Communication-optimal parallel algorithm for strassen’s matrix
multiplication,” in Proc. 24th Annu. ACM Symp. Parallelism Algo-
rithms Archit., 2012, pp. 193–204.

Rong Gu received the PhD degree in computer
science from Nanjing University, in Dec. 2016.
He is an assistant researcher with State Key Lab-
oratory for Novel Software Technology, Nanjing
University, China. His research interests include
parallel computing, distributed systems and dis-
tributed machine learning. He was a student
member of the IEEE.

Yun Tang received the BS degree in Nanjing
University, China, in 2013. He is currently work-
ing towards the MS degree in Nanjing University.
His research interests include distributed data-
flow system and cloud computing. He is a student
member of the IEEE.

Chen Tian received the BS, MS, and PhD
degrees from Department of Electronics and
Information Engineering from Huazhong Univer-
sity of Science and Technology, China, in 2000,
2003, and 2008, respectively. He is an associate
professor with State Key Laboratory for Novel
Software Technology, Nanjing University, China.
He was previously an associate professor with
the School of Electronics Information and Com-
munications, Huazhong University of Science
and Technology, China. From 2012 to 2013, he

was a postdoctoral researcher with the Department of Computer Sci-
ence, Yale University. His research interests include data center net-
works, network function virtualization, distributed systems, Internet
streaming and urban computing.

Hucheng Zhou received the PhD degrees from
Department of Computer Science and Technology
of Tsinghua University, 2011. He is a researcher in
Microsoft Research Asia. His research interests
span multiple areas including distributed systems,
data-parallel computing, large-scale machine
learning, mobile computing, program analysis and
compiler optimization, etc.

Guanru Li is a software engineer with Microsoft
Search Technology Center. He joined Microsoft
in 2015, after graduated from Shanghai Jiaotong
University with a BS degree. His current work
includes providing Spark as a service, developing
machine learning and streaming applications on
Spark.

Xudong Zheng received the MS degree from
Beihang University. He is a software develop
engineer from Microsoft Search Technology Cen-
ter. He worked on various projects for large scale
machine learning and data mining, which includs
optimization and adoption of Spark for some
applications in Microsoft. He joined Microsoft
at 2013.

Yihua Huang received the bachelor’s, master’s,
and PhD degrees in computer science from Nanj-
ing University. He is currently a professor in
computer science department and State Key
Laboratory for Novel Software Technology, Nanj-
ing University, China. His main research interests
include parallel and distributed computing, big
data parallel processing, distributed machine
learning algorithm and system, and Web informa-
tion mining.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2552 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017


