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1 Introduction

The normal distribution is the most widely used probability distribution in
statistical pattern recognition, computer vision, and machine learning. The
nice properties of this distribution might be the main reason for its popularity.

In this note, I try to organize the basic facts about the normal distribution.1

There is no advanced theory in this note. However, in order to understand these
facts, some linear algebra and mathematical analysis basics are needed, which
are not always covered sufficiently in undergraduate texts. The attempt of this
note is to pool these facts together, and hope that it will be useful.

2 Definition

We will start by defining the normal distribution.

2.1 Univariate Normal

The probability density function (p.d.f.) of a univariate normal distribution has
the following form:

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , (1)

in which µ is the expected value of x, and σ2 is the variance. We assume that
σ > 0.

We have to first verify that Equation 1 is a valid probability density function.
It is obvious that p(x) ≥ 0 always holds for x ∈ R. From Equation 95 in

Appendix A, we know that
∫∞
−∞ exp(−x

2

t ) dx =
√
tπ. Applying this equation,

we have ∫ ∞
−∞

p(x) dx =
1√
2πσ

∫ ∞
−∞

exp

(
− (x− µ)2

2σ2

)
dx (2)

=
1√
2πσ

∫ ∞
−∞

exp

(
− x2

2σ2

)
dx (3)

1This note was originally written while I was at the Georgia Institute of Technology, in
2005. I planned to write a short note listing some properties of the normal distribution for
my own reference. However, somehow I decided to keep it self-contained. The result is that
it becomes quite fat. This version (in Jan 2016) is a slight modification, mainly correcting a
few typos.
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=
1√
2πσ

√
2σ2π = 1 , (4)

which means that p(x) is a valid p.d.f.

The distribution with p.d.f. 1√
2π

exp
(
−x

2

2

)
is called the standard normal

distribution (whose µ = 0 and σ2 = 1). In Appendix A, it is showed that the
mean and standard deviation of the standard normal distribution are 0 and
1, respectively. By doing a change of variables, it is easy to show that µ =∫∞
−∞ xp(x) dx and σ2 =

∫∞
−∞(x− µ)2p(x) dx for a general normal distribution.

2.2 Multivariate Normal

The probability density function of a multivariate normal distribution has the
following form:

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (5)

in which x is a d-dimensional vector, µ is the d-dimensional mean, and Σ is the
d-by-d covariance matrix. We assume that Σ is a symmetric, positive definite
matrix.

We have to first verify that Equation 5 is a valid probability density function.
It is obvious that p(x) ≥ 0 always holds for x ∈ Rd. Next, we diagonalize Σ as
Σ = UTΛU in which U is an orthogonal matrix containing the eigenvectors of
Σ, Λ = diag(λ1, λ2, . . . , λd) is a diagonal matrix containing the eigenvalues of Σ
in its diagonal entries (with |Λ| = |Σ|).

Let us define a new random vector as

y = Λ−1/2U(x− µ) . (6)

The mapping from y to x is one-to-one. The determinant of the Jacobian is∣∣∣ ∂y∂x ∣∣∣ = |Λ−1/2U | = |Σ|−1/2 (because |U | = 1 and |Λ| = |Σ|). Now we are ready

to calculate the integral∫
p(x) dx =

∫
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx (7)

=

∫
1

(2π)d/2|Σ|1/2
|Σ|1/2 exp

(
−1

2
yTy

)
dy (8)

=

d∏
i=1

(∫
1√
2π

exp

(
−y

2
i

2

)
dyi

)
(9)

=

d∏
i=1

1 = 1 , (10)

in which yi is the i-th component of y, i.e., y = (y1, y2, . . . , yd)
T . This equation

gives the validity of the multivariate normal density function.
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Since y is a random vector it has a density, denoted as pY (y). Using the
inverse transform method, we get

pY (y) = p
(
µ+ UTΛ1/2y

) ∣∣∣UTΛ1/2
∣∣∣ (11)

=

∣∣UTΛ1/2
∣∣

(2π)d/2|Σ|1/2
exp

(
−1

2

(
UTΛ1/2y

)T
Σ−1

(
UTΛ1/2y

))
(12)

=
1

(2π)d/2
exp

(
−1

2
yTy

)
. (13)

The density defined by

pY (y) =
1

(2π)d/2
exp

(
−1

2
yTy

)
(14)

is called a spherical normal distribution. Let z be a random vector formed by
a subset of the components of y. By marginalizing y, it is clear that pZ(z) =

1
(2π)|z|/2

exp
(
− 1

2z
Tz
)
, and specifically pYi(yi) = 1√

2π
exp(−y

2
i

2 ). Using this fact,

it is straightforward to show that the mean vector and covariance matrix of a
spherical normal distribution are 0 and I, respectively.

Using the inverse transform of Equation 6, we can easily calculate the mean
vector and covariance matrix of the density p(x):

E[x] = E[µ+ UTΛ1/2y] = µ+ E[UTΛ1/2y] = µ (15)

E
[
(x− µ)(x− µ)T

]
= E

[
(UTΛ1/2y)(UTΛ1/2y)T

]
(16)

= UTΛ1/2E[yyT ]Λ1/2U (17)

= UTΛ1/2Λ1/2U (18)

= Σ . (19)

3 Notation and Parameterization

When we have a density of the form in Equation 5, it is often written as

x ∼ N(µ,Σ) , (20)

or
N(x;µ,Σ) . (21)

In most cases we will use the mean vector µ and the covariance matrix Σ to
express a normal density. This is called the moment parameterization. There is
another parameterization of the normal density. In the canonical parameteriza-
tion, a normal density is expressed as

p(x) = exp

(
α+ ηTx− 1

2
xTΛx

)
, (22)
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in which α = − 1
2

(
d log(2π)− log(|Λ|) + ηTΛ−1η

)
is a normalization constant

which does not depend on x. The parameters in these two representations are
related to each other by the following equations:

Λ = Σ−1 , (23)

η = Σ−1µ , (24)

Σ = Λ−1 , (25)

µ = Λ−1η . (26)

Notice that there is an abuse in our notation: Λ has different meanings in
Equation 22 and Equation 6. In Equation 22, Λ is a parameter in the canonical
parameterization of a normal density, which is not necessarily diagonal. In
Equation 6, Λ is a diagonal matrix formed by the eigenvalues of Σ.

It is straightforward to show that the moment parameterization and the
canonical parameterization of the normal distribution are equivalent to each
other. In some cases the canonical parameterization is more convenient to use
than the moment parameterization, for which an example will be shown later
in this note.

4 Linear Operation and Summation

In this section, we will touch some basic operations among several normal ran-
dom variables.

4.1 The Univariate Case

Suppose x1 ∼ N(µ1, σ
2
1) and x2 ∼ N(µ2, σ

2
2) are two independent univariate

normal variables. It is obvious that ax1 + b ∼ N(aµ1 + b, a2σ2
1), in which a and

b are two scalars.
Now consider a random variable z = x1 + x2. The density of z can be

calculated by a convolution, i.e.

pZ(z) =

∫ ∞
−∞

pX1(x1)pX2(z − x1) dx1 . (27)

Define x′1 = x1 − µ1, we get

pZ(z) =

∫
pX1

(x′1 + µ1)pX2
(z − x′1 − µ1) dx′1 (28)

=
1

2πσ1σ2

∫
exp

(
− x2

2σ2
1

− (z − x− µ1 − µ2)2

2σ2
2

)
dx (29)

=
exp

(
(z−µ1−µ2)2

σ2
1+σ2

2

)
2πσ1σ2

∫
exp

−
(
x− (z−µ1−µ2)σ2

1

σ2
1+σ2

2

)2

2σ2
1σ

2
2

σ2
1+σ2

2

 dx (30)
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=
1

2πσ1σ2
exp

(
(z − µ1 − µ2)2

σ2
1 + σ2

2

)√
2σ2

1σ
2
2

σ2
1 + σ2

2

π (31)

=
1

√
2π
√
σ2

1 + σ2
2

exp

(
(z − µ1 − µ2)2

σ2
1 + σ2

2

)
, (32)

in which the transition from the third last to the second last line used the result
of Equation 95. In short, the sum of two univariate normal random variables
is again a normal random variable, with the mean value and variance summed
up respectively, i.e., z ∼ N(µ1 + µ2, σ

2
1 + σ2

2). The summation rule is easily
generalized to n independent normal random variables.

4.2 The Multivariate Case

Suppose x1 ∼ N(µ1,Σ1) is a d-dimensional normal random variable, A is a q-
by-d matrix and b is a q-dimensional vector, then z = Ax+b is a q-dimensional
normal random variable: z ∼ N(Aµ+ b, AΣAT ).

This fact is proved using the characteristic function (see Appendix B). The
characteristic function of z is:

ϕZ(t) = EZ [exp(itTz)] (33)

= EX
[
exp

(
itT (Ax+ b)

)]
(34)

= exp(itT b)EX
[
exp

(
i(AT t)Tx

)]
(35)

= exp(itT b) exp

(
i(AT t)Tµ− 1

2
(AT t)TΣ(AT t)

)
(36)

= exp

(
itT (Aµ+ b)− 1

2
tT (AΣAT )t

)
, (37)

in which the transition to the last line used Equation 105 in Appendix B. Ap-
pendix B states that if a characteristic function ϕ(t) is of the form exp(itTµ−
1
2t
TΣt), then the underlying density p(x) is normal with mean µ and covariance

matrix Σ. Applying this fact to Equation 37, we immediately get

z ∼ N(Aµ+ b, AΣAT ) . (38)

Suppose x1 ∼ N(µ1,Σ1) and x2 ∼ N(µ2,Σ2) are two independent d-
dimensional normal random variables, and define a new random vector z =
x+ y. We can calculate the probability density function pZ(z) using the same
method as we used in the univariate case. However, the calculation is complex
and we have to apply the matrix inversion lemma in Appendix C.

Characteristic function simplifies the calculation. Using Equation 108 in the
Appendix B, we get

ϕZ(t) = ϕX(t)ϕY (t) (39)

= exp

(
itTµ1 −

1

2
tTΣ1t

)
exp

(
itTµ2 −

1

2
tTΣ2t

)
(40)
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Figure 1: Bivariate normal p.d.f.

= exp

(
itT (µ1 + µ2)− 1

2
tT (Σ1 + Σ2)t

)
, (41)

which immediately gives us z ∼ N(µ1 + µ2,Σ1 + Σ2). The summation of two
multivariate normal random variables is as easy to compute as in the univariate
case: sum up the mean vectors and covariance matrices. The rule is same for
summing up several multivariate normal random variables.

Now we have the tool of linear transformation and let us revisit Equation 6.
For convenience we retype the equation here: x ∼ N(µ,Σ), and

y = Λ−1/2U(x− µ) . (42)

Using the properties of linear transformations on a normal density, y is
indeed normal (in Section 2.2 we painfully calculated p(y) using the inverse
transform method), and has mean vector 0 and covariance matrix I.

The transformation of applying Equation 6 is called the whitening transfor-
mation, because the transformed density has an identity covariance matrix and
zero mean.

5 Geometry and Mahalanobis Distance

Figure 1 shows a bivariate normal density function. Normal density has only
one mode, which is the mean vector, and the shape of the density is determined
by the covariance matrix.

Figure 2 shows the equal probability contour of a bivariate normal random
variable. All points on a given equal probability contour must have the following
term evaluated to a constant value:

r2(x,µ) = (x− µ)TΣ−1(x− µ) = c . (43)

r2(x,µ) is called the Mahalanobis distance from x to µ, given the covariance
matrix Σ. Equation 43 defines a hyperellipsoid in the d dimensional space, which
means that the equal probability contour is a hyperellipsoid in the d-dimension
space. The principal component axes of this hyperellipsoid are given by the
eigenvectors of Σ, and the lengths of these axes are proportional to square root
of the eigenvalues associated with these eigenvectors.
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Figure 2: Equal probability contour of a bivariate normal distribution.

6 Conditioning

Suppose x1 and x2 are two multivariate normal random variables, which have
a joint p.d.f.

p

([
x1

x2

])
=

1

(2π)(d1+d2)/2|Σ|1/2

· exp

(
−1

2

[
x1 − µ1

x2 − µ2

]T [
Σ11 Σ12

Σ21 Σ22

]−1 [
x1 − µ1

x2 − µ2

])
,

in which d1 and d2 are the dimensionality of x1 and x2, respectively; and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. The matrices Σ12 and Σ21 are covariance matrices between

x1 and x2, and satisfying that Σ12 = (Σ21)T .
The marginal distributions x1 ∼ N(µ1,Σ11) and x2 ∼ N(µ2,Σ22) are easy

to get from the joint distribution. We are interested in computing the condi-
tional probability p(x1|x2).

We will need to compute the inverse of Σ, and this task is completed by
using the Schur complement (see Appendix C). For notational simplicity, we
denote the Schur complement of Σ11 as S11, defined as S11 = Σ22−Σ21Σ−1

11 Σ12.
Similarly, the Schur complement of Σ22 is S22 = Σ11 − Σ12Σ−1

22 Σ21.
Applying Equation 118 and noticing that Σ12 = (Σ21)T , we get (writing

x1 − µ1 as x′1, and x2 − µ2 as x′2 for notational simplicity)[
Σ11 Σ12

Σ21 Σ22

]−1

=

[
S−1

22 −S−1
22 Σ12Σ−1

22

−Σ−1
22 ΣT12Σ−1

22 Σ−1
22 + Σ−1

22 ΣT12S
−1
22 Σ12Σ−1

22

]
, (44)

and [
x1 − µ1

x2 − µ2

]T [
Σ11 Σ12

Σ21 Σ22

]−1 [
x1 − µ1

x2 − µ2

]
= x′1S

−1
22 x

′
1 + x′T2 (Σ−1

22 + Σ−1
22 ΣT12S

−1
22 Σ12Σ−1

22 )x′2

= (x′1 + Σ12Σ−1
22 x

′
2)TS−1

22 (x′1 + Σ12Σ−1
22 x

′
2) + x′T2 Σ−1

22 x
′
2 . (45)

Thus, we can split the joint distribution as

p

([
x1

x2

])
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=
1

(2π)d1 |S−1
22 |1/2

exp

(
− (x′1 + Σ12Σ−1

22 x
′
2)TS−1

22 (x′1 + Σ12Σ−1
22 x

′
2)

2

)
· 1

(2π)d2 |Σ−1
22 |1/2

exp

(
−1

2
x′T2 Σ−1

22 x
′
2

)
, (46)

in which we used the fact that |Σ| = |Σ22||S22| (from Equation 114 in Ap-
pendix C).

Since the second term in the right hand side of Equation 46 is the marginal
p(x2) and p(x1,x2) = p(x1|x2)p(x2), we now get the conditional probability
p(x1|x2) as

p(x1|x2) =
1

(2π)d1 |S−1
22 |1/2

exp

(
− (x′1 + Σ12Σ−1

22 x
′
2)TS−1

22 (x′1 + Σ12Σ−1
22 x

′
2)

2

)
,

(47)
or

x1|x2 ∼ N(µ1 + Σ12Σ−1
22 x

′
2, S
−1
22 ) (48)

∼ N(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21) . (49)

7 Product of Gaussians

Suppose p1(x) = N(x;µ1,Σ1) and p2(x) = N(x;µ2,Σ2) are two independent
d-dimensional normal random variables. Sometimes we want to compute the
density which is proportional to the product of the two normal densities, i.e.,
pX(x) = αp1(x)p2(x), in which α is a proper normalization constant to make
pX(x) a valid density function.

In this task, the canonical parameterization (see Section 3) will be extremely
helpful. Writing the two normal densities in the canonical form:

p1(x) = exp

(
α1 + ηT1 x−

1

2
xTΛ1x

)
(50)

p2(x) = exp

(
α2 + ηT2 x−

1

2
xTΛ2x

)
, (51)

the density pX(x) is then easy to compute, as

pX(x) = αp1(x)p2(x)

= exp

(
α′ + (η1 + η2)Tx− 1

2
xT (Λ1 + Λ2)x

)
. (52)

This equation states that in the canonical parameterization, in order to compute
the product of two Gaussians, we just sum the parameters.

This result is readily extendable to the product of n normal densities. Sup-
pose we have n normal distributions pi(x), whose parameters in the canonical
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parameterization are ηi and Λi, respectively (i = 1, 2, . . . , n). Then, pX(x) =
α
∏n
i=1 pi(x) is also a normal density, given by

pX(x) = exp

α′ +( n∑
i=1

ηi

)T
x− 1

2
xT

(
n∑
i=1

Λi

)
x

 . (53)

Now let us go back to the moment parameterization. Suppose we have n
normal distribution pi(x), in which pi(x) = N(x;µi,Σi), i = 1, 2, . . . , n. Then,
pX(x) = α

∏n
i=1 pi(x) is normal,

p(x) = N(x;µ,Σ) , (54)

where

Σ−1 = Σ−1
1 + Σ−1

2 + · · ·+ Σ−1
n , (55)

Σ−1µ = Σ−1
1 µ1 + Σ−1

2 µ2 + · · ·+ Σ−1
n µn . (56)

8 Application I: Parameter Estimation

Now that we have listed some properties of the normal distribution. Next, let
us show how these properties are applied.

The first application is parameter estimation in probability and statistics.

8.1 Maximum Likelihood Estimation

Let us suppose that we have a d-dimensional multivariate normal random vari-
able x ∼ N(µ,Σ), and n i.i.d. (independently and identically distributed)
samples D = {x1,x2, . . . ,xn} sampled from this distribution. The task is to
estimate the parameters µ and Σ.

The log-Likelihood function of observing the data set D given parameters µ
and Σ is:

l(µ,Σ|D) (57)

= log

n∏
i=1

p(xi) (58)

= − nd

2
log(2π) +

n

2
log |Σ−1| − 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ) . (59)

Taking the derivative of the log-likelihood with respect to µ and Σ−1 gives
(see Appendix D):

∂l

∂µ
=

n∑
i=1

Σ−1(xi − µ) , (60)
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∂l

∂Σ−1
=
n

2
Σ− 1

2

n∑
i=1

(xi − µ)(xi − µ)T , (61)

in which Equation 60 used Equation 123 and the chain rule, and Equation 61
used Equations 130 and 131, and the fact that Σ = ΣT . The notation in
Equation 60 is a little bit confusing. There are two Σ in the right hand side: the
first represents a summation and the second represents the covariance matrix.

In order to find the maximum likelihood solution, we want to find the max-
imum of the likelihood function. Setting both Equation 60 and Equation 61 to
0 gives us the solution:

µML =
1

n

n∑
i=1

xi , (62)

ΣML =
1

n

n∑
i=1

(xi − µML)(xi − µML)T . (63)

These two equations clearly states that the maximum likelihood estimation
of the mean vector and the covariance matrix are just the sample mean and the
sample covariance matrix, respectively.

8.2 Bayesian Parameter Estimation

In this Bayesian estimation example, we assume that the covariance matrix
is known. Let us suppose that we have a d-dimensional multivariate normal
density x ∼ N(µ,Σ), and n i.i.d. samples D = {x1,x2, . . . ,xn} sampled from
this distribution. We also need a prior on the parameter µ. Let us assume that
the prior is µ ∼ N(µ0,Σ0). The task is then to estimate the parameters µ.

Note that we assume µ0, Σ0, and Σ are all known. The only parameter to
be estimated is the mean vector µ.

In Bayesian estimation, instead of find a point µ̂ in the parameter space
that gives maximum likelihood, we calculate p(µ|D), the posterior density for
the parameter. And we use the entire distribution of µ as our estimation for
this parameter.

Applying the Bayes’ law, we get

p(µ|D) = αp(D|µ)p0(µ) (64)

= αp0(µ)

n∏
i=1

p(xi) , (65)

in which α is a normalization constant which does not depend on µ.
Apply the result in Section 7, we know that p(µ|D) is also normal, and

p(µ|D) = N(µ;µn,Σn) , (66)

where

Σ−1
n = nΣ−1 + Σ−1

0 , (67)
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Σ−1
n µn = nΣ−1µ+ Σ−1

0 µ0 . (68)

Both µn and Σn can be calculated from known parameters and the data set.
Thus, we have determined the posterior distribution p(µ|D) for µ.

We choose the normal distribution to be the prior family. Usually, the prior
distribution is chosen such that the posterior belongs to the same functional
form as the prior. A prior and posterior chosen in this way are said to be
conjugate. We have seen that the normal distribution has the nice property
that both the prior and the posterior are normal, i.e., normal distribution is
auto-conjugate.

After p(µ|D) is determined, a new sample is classified by calculating the
probability

p(x|D) =

∫
µ

p(x|µ)p(µ|D) dµ . (69)

Equation 69 and Equation 28 has the same form. Thus, we can guess that
p(x|D) is normal again, and

p(x|D) = N(x;µn,Σ + Σn) . (70)

This guess is correct, and is easy to verify by repeating the steps in Equation 28
through Equation 32.

9 Application II: Kalman Filter

The second application is Kalman filtering.

9.1 The model

The Kalman filter addresses the problem of estimating a state vector x in a
discrete time process, given a linear dynamic model

xk = Axk−1 +wk−1 , (71)

and a linear measurement model

zk = Hxk + vk . (72)

The process noise wk and measurement noise vk are assumed to be normal:

w ∼ N(0, Q) , (73)

v ∼ N(0, R) . (74)

These noised are assumed to be independent of all other random variables.
At time k−1, assuming that we know the distribution of xk−1, the task is to

estimate the posterior probability of xk at time k, given the current observation
zk and the previous state estimation p(xk−1).

12



In a broader point of view, the task can be formulated as estimating the
posterior probability of xk at time k, given all the previous state estimates and
all the observations up to time step k. Under certain Markovian assumptions,
it is not hard to prove that these two problem formulations are equivalent.

In the Kalman filter setup, we assume that the prior is normal, i.e., at time
t = 0, p(x0) = N(x;µ0, P0). Instead of using Σ, here we use P to represent a
covariance matrix, in order to match the notations in the Kalman filter litera-
ture.

9.2 The Estimation

Now we are ready to see that with the help of the properties of Gaussians
we have obtained, it is quite easy to derive the Kalman filter equations. The
derivation in this section is neither precise nor rigorous, which mainly provides
an intuitive way to interpret the Kalman filter.

The Kalman filter can be separated in two (related) steps. In the first step,
based on the estimation p(xk−1) and the dynamic model (Equation 71), we get
an estimate p(x−k ). Note that the minus sign means the estimation is done before
we take into account the measurement. In the second step, based on p(x−k )
and the measurement model (Equation 72), we get the final estimation p(xk).
However, we want to emphasize that this estimation is in fact conditioned on the
observation zk and previous state xt−1, although we omitted these dependencies
in our notations.

First, let us estimate p(x−k ). Assume that at time k − 1, the estimation we
already got is a normal distribution

p(xk−1) ∼ N(µk−1, Pk−1) . (75)

This assumption coincides well with the prior p(x0). We will show that, under
this assumption, after the Kalman filter updates, p(xk) will also become normal,
and this makes the assumption reasonable.

Applying the linear operation equation (Equation 38) on the dynamic model
(Equation 71), we immediately get the estimation for x−k :

x−k ∼ N(µ−k , P
−
k ) , (76)

µ−k = Aµk−1 , (77)

P−k = APk−1A
T +Q . (78)

The estimate p(x−k ) conditioned on the observation zk gives p(xk), the es-
timation we want. Thus the conditioning property (Equation 49) can be used.

Without observing zk at time k, the best estimate for it is Hx−k + vk,
which has a covariance Cov(zk) = HP−k H

T + R (by applying Equation 38 to
Equation 72). In order to use Equation 49, we compute

Cov(zk,x
−
k ) = Cov(Hx−k + vk,x

−
k ) (79)

= Cov(Hx−k ,x
−
k ) (80)
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= HP−k , (81)

the joint covariance matrix of (x−k , zk) is[
P−k P−k H

T

HP−k HP−k H
T +R

]
. (82)

Applying the conditioning property (Equation 49), we get

p(xk) = p(x−k |zk) (83)

∼ N(µk, Pk) , (84)

Pk = P−k − P
−
k H

T (HP−k H
T +R)−1HP−k , (85)

µk = µ−k + P−k H
T (HP−k H

T +R)−1(zk −Hµk) . (86)

The two sets of equations (Equation 76 to Equation 78, and Equation 83 to
Equation 86) are the Kalman filter updating rules.

The term P−k H
T (HP−k H

T +R)−1 appears in both Equation 85 and Equa-
tion 86. Defining

Kk = P−k H
T (HP−k H

T +R)−1 , (87)

these equations are simplified as

Pk = (I −KkH)P−k , (88)

µk = µ−k +Kk(zk −Hµ−k ) . (89)

The term Kk is called the Kalman gain matrix, and the term zk−Hµ−k is called
the innovation.

A Gaussian integral

We will compute the integral of the univariate normal p.d.f. in this section.
The trick in doing this integration is to consider two independent univariate
Gaussians at one time.

∫ ∞
−∞

e−x
2

dx =

√(∫ ∞
−∞

e−x2 dx

)(∫ ∞
−∞

e−y2 dy

)
(90)

=

√∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dxdy (91)

=

√∫ ∞
−∞

∫ 2π

0

re−r2 drdθ (92)

=

√
2π

[
−1

2
e−r2

]∞
0

(93)
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=
√
π , (94)

in which a conversion to the polar coordinates are performed in Equation 92,
and the extra r appeared inside the equation is the determinant of the Jacobian.

The above integral can be easily extended as

f(t) =

∫ ∞
−∞

exp

(
−x

2

t

)
dx =

√
tπ , (95)

in which we assume t > 0. Then, we have

df

dt
=

d

dt

∫ ∞
−∞

exp

(
−x

2

t

)
dx (96)

=

∫ ∞
−∞

x2

t2
exp

(
−x

2

t

)
dx , (97)

and ∫ ∞
−∞

x2 exp

(
−x

2

t

)
dx =

t2

2

√
π

t
. (98)

As a direct consequence, we have∫ ∞
−∞

x2 1√
2π

exp

(
−x

2

2

)
dx =

1√
2π

4

2

√
π

2
= 1 . (99)

And, it is obvious that∫ ∞
−∞

x
1√
2π

exp

(
−x

2

2

)
dx = 0 , (100)

since x exp
(
−x

2

2

)
is an odd function.

The last two equations have proved that the mean and standard deviation
of a standard normal distribution are 0 and 1, respectively.

B Characteristic Functions

The characteristic function of a random variable with p.d.f. p(x) is defined as
its Fourier transform

ϕ(t) = E[eit
Tx] , (101)

in which i =
√
−1.

Let us compute the characteristic function of a normal random variable:

ϕ(t) (102)

= E[exp(itTx)] (103)

=

∫
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ) + itTx

)
dx (104)
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= exp

(
itTµ− 1

2
tTΣt

)
. (105)

Since the characteristic function is defined as a Fourier transform, the in-
verse Fourier transform of ϕ(t) will be exactly p(x), i.e., a random variable is
completely determined by its characteristic function. In other words, when we
see a characteristic function ϕ(t) is of the form exp(itTµ − 1

2t
TΣt), we know

that the underlying density is normal with mean µ and covariance matrix Σ.
Suppose that x and y are two independent random vectors with the same

dimensionality, and we define a new random vector z = x+ y. Then,

pZ(z) =

∫∫
z=x+y

pX(x)pY (y) dx dy (106)

=

∫
pX(x)pY (z − x) dx , (107)

which is a convolution. Since convolution in the function space is a product in
the Fourier space, we have

ϕZ(t) = ϕX(t)ϕY (t) , (108)

which means that the characteristic function of the sum of two independent
random variables is just the product of the characteristic functions of the sum-
mands.

C Schur Complement and the Matrix Inversion
Lemma

The Schur complement is very useful in computing the inverse of a block matrix.
Suppose M is a block matrix expressed as

M =

[
A B
C D

]
, (109)

in which A and D are non-singular square matrices. We want to compute M−1.
Some algebraic manipulations give[

I 0
−CA−1 I

]
M

[
I −A−1B
0 I

]
(110)

=

[
I 0

−CA−1 I

] [
A B
C D

] [
I −A−1B
0 I

]
(111)

=

[
A B
0 D − CA−1B

] [
I −A−1B
0 I

]
(112)

=

[
A 0
0 D − CA−1B

]
=

[
A 0
0 SA

]
, (113)
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in which I and 0 are identity and zero matrices of appropriate size, respectively;
and the term D−CA−1B is called the Schur complement of A, denoted as SA.

Taking the determinant of both sides of above equation, it gives

|M | = |A||SA| . (114)

Equation XMY = Z implies that M−1 = Y Z−1X when both X and Y are
invertible. Hence, we have

M−1 =

[
I −A−1B
0 I

] [
A 0
0 SA

]−1 [
I 0

−CA−1 I

]
(115)

=

[
A−1 −A−1BS−1

A

0 S−1
A

] [
I 0

−CA−1 I

]
(116)

=

[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
. (117)

Similarly, we can also compute M−1 by using the Schur complement of D,
in the following way:

M−1 =

[
S−1
D −S−1

D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1

]
, (118)

|M | = |D||SD| . (119)

Equations 117 and 118 are two different representation of the same matrix
M−1, which means that the corresponding blocks in these two equations must
be equal, for example, S−1

D = A−1 + A−1BS−1
A CA−1. This result is known as

the matrix inversion lemma:

S−1
D = (A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1 . (120)

The following result, which comes from equating the two upper right blocks
is also useful:

A−1B(D − CA−1B)−1 = (A−BD−1C)−1BD−1 . (121)

This formula and the matrix inversion lemma are useful in the derivation of the
Kalman filter equations.

D Vector and Matrix Derivatives

Suppose y is a scalar, A is a matrix, and x and y are vectors. The partial
derivative of y with respect to A is defined as(

∂y

∂A

)
ij

=
∂y

∂aij
, (122)

where aij is the (i, j)-th component of the matrix A.
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Based on this definition, it is easy to get the following rule

∂

∂x
(xTy) =

∂

∂x
(yTx) = y . (123)

For a square matrix A that is n-by-n, the determinant of the matrix defined
by removing from A the i-th row and j-th column is called a minor of A,
and denoted as Mij . The scalar cij = (−1)i+jMij is called a cofactor of A.
The matrix Acof with cij in its (i, j)-th entry is called the cofactor matrix of
A. Finally, the adjoint matrix of A is defined as the transpose of the cofactor
matrix

Aadj = ATcof . (124)

There are some well-known facts about the minors, determinant, and adjoint
of a matrix:

|A| =
∑
j

aijcij , (125)

A−1 =
1

|A|
Aadj . (126)

Since Mij has removed the i-th row, it does not depend on aij , neither does
cij . Thus, we have

∂

∂aij
|A| = cij , or, (127)

∂

∂A
|A| = Acof , (128)

which in turn shows that

∂

∂A
|A| = Acof = ATadj = |A|(A−1)T . (129)

Using the chain rule, we immediately get that for a positive definite matrix
A,

∂

∂A
log |A| = (A−1)T . (130)

Applying the definition, it is also easy to show that for a square matrix A,

∂

∂A
(xTAx) = xxT , (131)

since xTAx =
∑n
i=1

∑n
j=1 aijxixj , where x = (x1, x2, . . . , xn)T .

Exercises

In the exercises for this note, we will discuss a few basic properties of the
exponential family. Exponential family is probably the most important class of
distributions, with the normal distribution being a representative of it.
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We say a p.d.f. or p.m.f. (for continuous or discrete random vectors) is in
the exponential family with parameters θ if it can be written as the following
form:

p(x|θ) =
1

Z(θ)
h(x) exp

(
θTφ(x)

)
. (132)

Various notations involved in this definition are explained as follows.

• Canonical parameters. θ ∈ Rd are the canonical parameters or natural
parameters.

• x are the random variables, which can be either continuous or discrete.

• Sufficient statistics. φ(x) ∈ Rd is a set of sufficient statistics for x. Note
that m = d may (and often) not hold. Let X be a set of i.i.d. samples from
p(x|θ). Loosely speaking, the term “sufficient” means that the statistics
φ(X) contains all the information (i.e., sufficient) to estimate the param-
eters (θ). Obviously, φ(x) = x is a trivial sufficient statistics with respect
to x.

• h(x) is a scaling function. Note that h(x) ≥ 0 is required to make p(x|θ)
a valid p.d.f. or p.m.f.

• Partition function. Z(θ) is called a partition function, whose role is to
make p(x|θ) integrates (or sums) to 1. Hence,

Z(θ) =

∫
h(x) exp

(
θTφ(x)

)
dx

in the continuous case. In the discrete case, we simply replace the inte-
gration with a summation.

• Cumulant function. We can define a log partition function A(θ), as A(θ) =
log(Z(θ)). With such a new notation, Equation 132 has an equivalent
form:

p(x|θ) = h(x) exp
(
θTφ(x)−A(θ)

)
. (133)

A(θ) is also called a cumulant function, the meaning of which will be made
clear soon.

Note that these functions or statistics are not unique. For example, we can
multiply the parameters θ by a constant c > 0, multiply the sufficient statistics
φ by 1/c, and change h and Z accordingly to obtain an equivalent p(x|θ).
Similarly, we can change the scale h and partition function Z simultaneously.
It is often the case that we choose h(x) = 1 for any x.

1. (a) Show that the canonical parameterization (Equation 22) is equivalent
to the more common moment parameterization in Equation 5.

(b) Show that a normal distribution is in the exponential family.

(c) The Bernoulli distribution is a discrete distribution. A Bernoulli
random variable X can be either 0 or 1, with Pr(X = 1) = π and
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Pr(X = 0) = 1 − π, in which 0 ≤ π ≤ 1. Show that the Bernoulli
distribution is in the exponential family.

2. (Cumulant function) In statistics, the first cumulant of a random variable
X is the expectation E[X], and the second cumulant is the variance (or
covariance matrix) E[(X−EX)2]. In the exponential family, the cumulant
function A(θ) has close relationships to these cumulants of the sufficient
statistics φ(x).

(a) Prove that ∂A
∂θ = E[φ(X)]. (Hint: You can exchange the order of the

integration and differentiation operators in this case safely.)

(b) Prove that ∂2A
∂θ∂θT

= Var (φ(X)).

(c) Use the above theorems to find the expectation and variance of the
Bernoulli distribution. Check the correctness of your calculations using
the definition of mean and variance.

3. (Beta distributions) The beta distribution is a continuous distribution.
The support of a beta distribution is [0, 1], i.e., its p.d.f. is 0 for values
that are negative or larger than 1. For simplicity, we use the range (0, 1)
as a beta distribution’s support in this problem, i.e., excluding x = 0 and
x = 1.

A beta distribution has two shape parameters α > 0 and β > 0, which
determines the shape of the distribution. And, a beta random variable is
often denoted as X ∼ Beta(α, β) when the two shape parameters are α
and β, respectively. Note that Beta(α, β) and Beta(β, α) are two different
distributions.

(a) The p.d.f. of a beta distribution is

p(x) =
1

B(α, β)
xα−1(1− x)β−1 , (134)

for 0 < x < 1, in which B(α, β) =
∫ 1

0
tα−1(1−t)β−1 dt is the Beta function.

The p.d.f. is zero for other x values. Show that a beta distribution is in
the exponential family. What is the partition function?

(b) The Gamma function is defined as Γ(x) =
∫∞

0
tx−1e−t dt. Read the

information at https://en.wikipedia.org/wiki/Gamma_function and
https://en.wikipedia.org/wiki/Beta_function to catch a few impor-
tant properties of the Gamma and Beta functions, especially the following
ones (proofs are not required):

i. Γ(0.5) =
√
π

ii. Γ(− 1
2 ) = −2

√
π

iii. Γ(n) = (n−1)! for any positive integer n, in which ! means the factorial
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function.

iv. B(x, y) = Γ(x)Γ(y)
Γ(x+y)

v. B(x+ 1, y) = B(x, y) · x
x+y

vi. B(x, y + 1) = B(x, y) · x
y+y

(c) Write your own code to draw curves for the p.d.f. of Beta(0.5, 0.5),
Beta(1, 5) and Beta(2, 2). Calculate the p.d.f. values for x = 0.01n using
Equation 134 to draw the curves, where 1 ≤ n ≤ 99 enumerates positive
integers between 1 and 99.

4. (Conjugate prior) The exponential family is particularly useful in Bayesian
analysis, because their conjugate priors exist. Given a distribution p(x|θ)
in the exponential family (hence the likelihood function is in the exponen-
tial family too), we can always find another distribution p(θ) such that
the posterior distribution p(θ|x) is in the same family with that of p(θ).
We say the prior is a conjugate prior for the likelihood function if the prior
and the posterior has the same form. In this note, we have shown that
the normal distribution is conjugate to itself.

In this problem, we will use the Bernoulli-Beta pair as an example to
further illustrate the conjugate priors for exponential family distributions.
Similar procedures can be extended to handle other exponential family
distributions and the exponential family in general.

(a) Let D = {x1, x2, . . . , xn} be i.i.d. samples from a Bernoulli distribution
with Pr(X = 1) = π. Show that the likelihood function

p(D|π) = (1− π)n exp

(
ln(

π

1− π
)

n∑
i=1

xi

)
.

(b) Because θx · θy = θx+y, it is natural to set the prior p(π) to the
following form,

p(π|ν0, τ0) = c(1− π)ν0 exp

(
ln(

π

1− π
)τ0

)
,

in which c > 0 is a normalization constant, ν0 and τ0 are parameters for
the prior distribution. Show that

p(π|ν0, τ0) ∝ πτ0(1− π)ν0−τ0

and further show it is a Beta distribution. What are the parameters of
this Beta distribution? And, what is the value of c in terms of ν0 and τ0?

(c) Show that the posterior p(π|D) is a Beta distribution. What are the
parameters of this Beta distribution?

(d) Intuitively explain what the prior does.
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