Combining Logical Abduction and Statistical Induction: Discovering Written Primitives with Human Knowledge

Wang-Zhou Dai and Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China
{daiwz, zhouzh}@lamda.nju.edu.cn

Abstract
In many real tasks there are human knowledge expressed in logic formulae as well as data samples described by raw features (e.g., pixels, strings). It is popular to apply SRL or PILP techniques to exploit human knowledge through learning of symbolic data, or statistical learning techniques to learn from the raw data samples; however, it is often desired to directly exploit these logic formulae on raw data processing, like human beings utilizing knowledge to guide perception. In this paper, we propose an approach, LASIN, which combines Logical Abduction and Statistical Induction. The LASIN approach generates candidate hypotheses based on the abduction of first-order formulae, and then, the hypotheses are exploited as constraints for statistical induction. We apply the LASIN approach to the learning of representation of written primitives, where a primitive is a basic component in human writing. Our results show that the discovered primitives are reasonable for human perception, and these primitives, if used in learning tasks such as classification and domain adaptation, lead to better performances than simply applying feature learning based on raw data only.

1 Introduction
Unifying statistical and symbolic machine learning has been mentioned more and more frequently (Russell 2015; Tenenbaum et al. 2011). In fact, almost 30 years ago, Donald Michie (1988) had already pointed out that the development of machine learning should be able to manipulate symbolic representation. Many approaches have been proposed to fulfill this goal, which can be roughly categorized into two types: Statistical Relational Learning (SRL) (Getoor and Taskar 2007) and Probabilistic Inductive Logic Programming (PILP) (De Raedt and Kersting 2008). Owing to the ability to combine the syntactic and semantic expressiveness of first-order logic with the compositional semantics of probabilistic model (Koller and Friedman 2009), these approaches have achieved great success in many areas including natural language processing (Wang, Mazaitis, and Cohen 2013), robotics (Nitti, De Laet, and De Raedt 2014), bioinformatics (De Maeyer et al. 2013), etc.

Most approaches for unifying statistical and symbolic learning were designed for applications in symbolic domains (Russell 2015). In many real tasks, however, human knowledge expressed in first-order logic (FOL) and data samples described by raw features exist simultaneously. For example, if we want to discover written primitives from images of handwritten characters, human knowledge about pen strokes is worth being exploited (see Figure 1). On one hand, this kind of background knowledge, which can be easily expressed with symbolic language like FOL, are difficult to inject into common statistical learning (Getoor and Taskar 2007). On the other hand, typical approaches for unifying statistics and logic are capable of exploiting the FOL expressed human knowledge, yet they are seldom designed for raw data inputs (Russell 2015).

In this paper, we define the concept extraction problem. Similar to traditional representation learning (Bengio, Courville, and Vincent 2013), the goal of concept extraction is to learn a set of features from the raw input space. The difference lies in the fact is that concept extraction is facilitated with an FOL knowledge base.

To address concept extraction, we draw inspiration from human cognition. Perception, a human cognitive process in charging of the organization, identification and interpretation of raw sensory information (Schacter, Gilbert, and Wegner 2011), faces this kind of problem at almost every second in our life. According to Charles S. Peirce (1955), human perception is a kind of abduction, i.e., a form of logical inference going from an observation to a theory which may account for the observation. As psychologists admitted, Peirce’s theory provides “a midway between a seeing and a thinking” (Tiercelin 2005; Magnani 2009).

Inspired by Peirce’s abductive perception theory, we propose the LASIN approach that combines Logical Abduction and Statistical Induction for concept extraction. Firstly, we exploit abductive logic theory (Kakas, Kowalski, and Toni 1992) to generate ground hypotheses from the raw inputs. These hypotheses are then exploited as constraints for statistical induction to obtain a concept dictionary. Finally, the concepts are tested on the raw data and get accepted or revised for improvements. Experimental results show that the proposed approach is able to exploit FOL knowledge base and extract written primitives that are reasonable for human perception, where a primitive is a basic component in hu-
man writing. Furthermore, the primitives extracted with appropriate background knowledge can be beneficial to machine learning tasks such as classification and domain adaptation. Although the experiments are conducted on handwritten data, the LASIN approach is applicable to general problems as long as the human knowledge and raw data can be bridged by FOL formulae.

The rest of this paper is organized as follows: We first introduce the related works and formal definition of the concept learning task; then the details of LASIN algorithm are described; finally we report the empirical evaluations with discussions and then conclude.

2 Related Works

Several SRL/PILP approaches have been proposed to analyze images or handwritten data (Antanas et al. 2014; Shivram et al. 2014). These approaches could not directly handle the data represented by raw features. They usually perform feature extractions on the raw data at first, and then use statistical models to discover the symbols before relational learning. There are also approaches using statistical learning after logic learning (Dai and Zhou 2015), which could not be directly applied on raw data either.

Representation learning is a class of approaches that learn representations of the data, aiming at the extraction of useful information when building classifiers or other predictors (Bengio, Courville, and Vincent 2013). These approaches have achieved great success in practice. Many of them have been successfully applied to handwritten character recognition tasks, such as sparse coding (Lee et al. 2007; Olshausen and Field 1996), manifold learning (Yu, Zhang, and Gong 2009), deep neural networks (Cireșan et al. 2010). Most of representation learning techniques are based on statistical optimization that is subsymbolic and can hardly introduce symbolic knowledge like humans (Fiser et al. 2010).

Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people (Lake et al. 2016). A representative work in this branch similar to this paper is (Lake, Salakhutdinov, and Tenenbaum 2015), which learns the concept of strokes through induction of Bayesian programs. The difference lies in the fact that their inputs and background knowledge are not raw pixels and FOL but pen trajectories.

This paper focuses on exploiting FOL-represented human knowledge in raw data processing like abductive perception. We apply the proposed LASIN on handwritten data in this paper, since Douglas Hofstadter had suggested that “the problem of recognizing characters in all the ways people do contains most if not all of the fundamental challenges of AI” (Hofstadter 1985).

Recently the concept “learnware” is proposed (Zhou 2016), which is a pre-trained reusable model facilitated by specifications to be matched with user requests. The user requests deliver task requirement, actually a kind of knowledge, whereas logic description is an important option of composing the specifications/requests. Thus, studying the usage of logic formulae in statistical learning will also help explore some learnware implementation possibilities.

3 Problem Setting

In this section we formally present the task of concept extraction. Intuitively, concept extraction constrains the extracted features to be coherent with a well-defined background knowledge base. In this paper, we choose first-order logic (FOL) as the language of background knowledge.

A first-order alphabet is composed of constants, variables, functions, predicates, quantifiers and connectives. Constants represent objects in domain, e.g., “1” and “anna”. Variables range over the constants, e.g., “X”, and “Person”. Functions represent mappings from tuples of objects to objects, e.g., “s(X)” can be used to represent X + 1. Predicates represent relations among objects or attributes, e.g., “friends(X,Y)” means X and Y are friends. Quantifiers “∀” and “∃” constrain the range of variables. “∀X(p(X))” and “∃X(p(X))” are identical to say “p(X)” is true for all X and some X, respectively. Connectives are “¬” for implication, “∧” for conjunction, “∨” for disjunction, “¬” for negation and “=” for equality. A term is a constant, a variable or a function symbol immediately followed by a bracketed n-tuple of terms, e.g., “bob”, “X” and “s(s(0))”. An atom is a predicate symbol applied to a tuple of terms, e.g., “greater_than(X,2)”. A term or atom is said to be ground if and only if it does not contain any variable. Formulas are inductively defined by the following rules: 1) if P is a predicate symbol and T₁,...,Tₙ are terms then p(T₁,...,Tₙ) is a formula; 2) if φ is a formula, then ¬φ is a formula; 3) if φ and ψ are formulae, then φ ← ψ is a formula, and similar rules apply to other binary logical connectives; 4) if φ is a formula and X is a variable, then ∀X(φ) and ∃X(φ) are formulae. For example, ∀X(integer(X) ∧ X ≥ 0) is a first-order logical formula defining natural numbers. A background knowledge base KB is a set of first-order formulae, and a formula t satisfying KB is denoted as KB ⊨ t, e.g., if KB is the previous definition of natural number, we have KB ⊨ natural(1) and KB ⊭ natural(−9).
Concept extraction is formally defined as follows. The input consists of a set of training instances \(x = \{ x^{(1)}, \ldots, x^{(m)} \} \) with a background knowledge base \(KB \), where \(x^{(i)} \in \mathbb{R}^n \); \(KB \) is a set of first-order logic formulae. The task is to extract a dictionary \(D = \{ b_1, \ldots, b_s \} \) from \(x \) such that \(x \) can be accurately reconstructed by \(D \), where each basis vector \(b_j \in \mathbb{R}^n \) is a concept corresponding to \(KB \), i.e., \(\exists p \in KB \) such that \(KB \models p(b_j) \).

Concept extraction can be seen as an analogue to human perception, for example:

Example 1 Suppose we are seeing images of handwritten Arabic numbers. Typical background knowledge we hold is that characters are written stroke by stroke. We also know that strokes are continuous ink trajectories. In order to be written smoothly, every sub-stroke should not have drastic direction change. With this knowledge, we can easily accomplish two tasks: i) discover commonly appeared written primitives and use their spacial relations to code the characters; More importantly, ii) the discovered primitives can be of help for learning other handwritten characters.

Background knowledge in this example can be conveniently expressed by an FOL knowledge base:

\[
\text{KB1:} \quad \forall S(\text{stroke}(S) \leftarrow S = \{ P_1, P_2, \ldots \})
\]

\[
\wedge \text{sub_strk}(P_1, P_2, P_3)
\]

\[
\wedge \text{sub_strk}(P_2, P_3, P_4) \wedge \cdots. \quad (1)
\]

\[
\forall A \forall B \forall C(\text{sub_strk}(A, B, C) \leftarrow \text{ink}(AB) \wedge \text{ink}(BC) \wedge \text{angle}(AB, BC) < \alpha).
\]

where \(\text{stroke}(S) \) determines whether a point sequence \(S = \{ P_1, P_2, \ldots \} \) forms a trajectory of pen stroke, and each point \(P_i = (X_i, Y_i) \) is a coordinate on image; \(\text{sub_strk}(A, B, C) \) is sub-stroke constraint on two sequential ink segments \(AB \) and \(BC \); \(\text{ink}(AB) \) is true when there exists ink on line segment \(AB \) (with end points \(A \) and \(B \)); \(\text{angle}(AB, BC) \) calculates the angle between the two vectors; \(\alpha \) is a positive number (e.g. \(\frac{\pi}{4} \)) to limit the turning angle from \(AB \) to \(BC \).

The main challenge for concept extraction is how to constrain the searching process in raw feature space with \(KB \). Firstly, general FOL constraints are complicated and mostly indiscriminatable for statistical optimization. Secondly, raw data samples usually distribute in \(\mathbb{R}^n \) which contains an infinite number of possible groundings for symbolic models (Russell 2015).

4 The LASIN Approach

To tackle the concept extraction task, we propose the LASIN approach. The main idea is to constrain the statistical learning by feeding it with specific input data filtered by \(KB \).

We follow the framework of active hypothesis-testing process (Pyszczynski and Greenberg 1987). It is a problem solving process where a human encounters novel or unexpected events, which majorly consists of several sequential phases: 1) selection of a hypothesis for testing; 2) search for information relevant to the hypothesis; 3) assessment of the fit between the pattern of information implicated by the hypothesis and accessed during the information search stage; 4) evaluation of the fit, accept, reject or update the hypothesis. An outline of the proposed algorithm is shown as Algorithm 1.

Logical Abduction

The first step of LASIN is to generate ground hypotheses that account for raw data samples in \(x \) by logical abduction.

According to Charles S. Peirce, *Abduction* is a kind of logical inference. Different to deduction (from general rules to particular cases) and induction (from cases to rules), abduction is the inference process of forming a ground hypothesis that explains observed phenomena (Peirce 1955).

Abduction does not only involve in symbolic reasoning. In fact, vision is a good example of human applying abductive reasoning in subsymbolic scenarios (Park 2015; Dai, Muggleton, and Zhou 2015). For example, when we see a picture of a car, the pixels just tell us about its color and shape on one side; however we still can guess about its appearance in unobserved directions. Furthermore, we can even figure out its model type and many other information. Obviously, human can abduce logical symbols (e.g., model types) with just raw visual inputs (e.g., pixels).

Logical abduction has been applied to symbolic machine learning before (Tamaddoni-Nezhad et al. 2006). Here we give a brief introduction to abductive logic theory (Kakas, Kowalski, and Toni 1992):

Definition 1 Given an abductive logic theory \((P, A)\) where \(P \) is a logic program, \(A \) is set of abducible predicates in the logic program \(P \). For an observation \(O \), \(\Delta \) is an abductive explanation consisting of a set of ground abducible atoms on the predicates \(A \) such that \(P \cup \Delta = O \).

For knowledge base \(KB_1 \), we can define an abductive logic theory like this: the observations \(O \) are the images of characters \(x^{(i)} \in x \); the set of abducible predicate \(A = \{ \text{Stroke/1} \} \); the abductive program \(P \) is an FOL clause simply saying “a character is composed by strokes”:

\[
\forall C(\text{character}(C) \leftarrow C = \{ S_1, S_2, \ldots \} \wedge \text{Stroke}(S_1) \wedge \ldots). \quad (2)
\]
Observing a fact \(\text{character}(x^{(i)}) \), the logical abduction procedure will try to abduce a possible explanation \(\Delta^{(i)} \) – in this example, a sequence of “strokes” in \(x^{(i)} \). When each time the abduction solver tries to find a ground example of \(\text{Stroke}(S) \), it will consult its definition in KB1 and finally queries about the most basic facts such as ink line segments and ink points using Logical Vision (Dai, Muggleton, and Zhou 2015). To increase the efficiency, we apply greedy search for hypotheses abduction and use random sampling for basic facts (ink points) discovery. The time complexity of hypothesis abduction on each instance is \(O(s \log s) \) as it is implemented with a recursive logic program, where \(s \) is the number of sampled ink points on an instance.

The abduced groundings form a conjunction to explain the raw dataset \(x \). It is worth noticing that we should not simply equate abduction with inference to the best explanation because the result of abduction is not unique, which implies that there must be other processes between logical abduction and getting the best explanation. Here we suggest to take statistical induction as a candidate.

Statistical Induction

After the logical abduction, \(\mathbf{h} = \{ \Delta \} \) is obtained. It is the set of all abductive explanations from the training instances \(x \). Then, a statistical induction procedure is called to select the “best hypotheses”. Finally, the selected hypotheses are tested in the original raw data and get accepted or revised.

In this paper, we use Sparse Coding (SC) (Lee et al. 2007) for statistical induction.\(^1\) The optimization objective of SC encourages each input to be reconstructed well by a set of sparse codes and the extracted dictionary.

The statistical induction tries to find a small set of “best hypotheses”, and the resulted objective function can be written as follows:

\[
\min_{b,a} \sum_{k} ||h^{(k)} - \sum_{j} a_{j}^{(k)} b_{j}||_{2}^{2} + \beta ||a^{(k)}||_{1}
\]

s.t. \(||b_{j}||_{2} \leq 1, \forall j \in 1, \ldots, s \)

where \(\forall h^{(k)} \exists x(x \in x \land h^{(k)} \subset x \land KB \models p(h^{(k)})) \).

where \(h^{(k)} \subset x \) means \(h^{(k)} \) is a ground explanatory hypothesis abduced from \(x \); \(p \) is the predicate of target concept in \(KB \); \(D = \{b_{1}, b_{2}, \ldots, b_{s}\} \) are the basis vectors (dictionary) with each \(b_{j} \in \mathbb{R}^{n} \) as an extracted concept; \(a = \{a^{(1)}, a^{(2)}, \ldots, a^{(m)}\} \) are the codes; \(a_{j}^{(k)} \) is the activation of the basis \(b_{j} \) for input \(h^{(k)} \). The learned bases are abstractions of \(h^{(k)} \) and can be seen as the induced “best explanations”. Because \(\{h^{(k)}\} \) are obtained from logical abduction, they are guaranteed to satisfy the constraint in this objective function.

The final step of LASIN is to test the quality of the abtracted hypotheses \(D \). More precisely, it will use \(D \) to reconstruct the original data \(x \) and compute the error of the reconstructed \(x' \). Depending on the quality of \(x' \), the algorithm will choose either to revise the hypotheses \(h \) by doing more abductions based on the difference between \(x \) and \(x' \) or to return current \(D \) as output.

5 **Empirical Evaluation**

In this section we report two experimental results of LASIN on 3 real handwritten characters datasets. Some examples of the datasets and results are illustrated with Figure 1 and 3. We compare LASIN with original sparse coding as the baseline since it is a widely used representation learning approach and has been proved to be successful in practice (Lee et al. 2007).

The sparse coding and other clustering models in the experiments are implemented by the mlpack toolbox (Curtin et al. 2013). Logical abduction is implemented by using SWI-Prolog (Wielemaker et al. 2012).

Devanagari Primitives Discovery

We use HPL-Devanagari (Bharath and Madhvanath 2010) dataset in this task. This dataset contains approximately 270 samples of each of 111 Devanagari characters written by over 100 native Hindi speakers. Each Devanagari character is constructed by some primitive strokes (Kopparapu and Lajish 2014), shown in Figure 2. Different to OCR task which uses writing trajectories to recognize the characters, in this experiment, we only use the raw images to extract \(|D| = 200 \) handwritten primitives from the characters. We compare the stroke (Knowledge base KB1) based LASIN with original sparse coding trained with same input data and default parameters.

Samples of the results of LASIN and sparse coding are shown in Figure 3c and Figure 3d, respectively. Samples of the ground hypotheses abduced by stroke based LASIN are shown in Figure 3b. Comparing Figure 2 with Figure 3c and 3d, we can observe that augmented with human knowledge about strokes, LASIN can extract written primitives that are more reasonable for human cognition. This is because the result of logical abduction (as in Figure 3b) constrain statistical induction to search for models in a local area that close to human perceived concepts in \(KB \). Although the abduced ground hypotheses in Figure 3b are more clear than the dictionary produced by statistical induction in Figure 3c, the later is more general as it contains many sub-strokes which can compose more complicated written primitives.

Classification and Domain Adaptation

Datasets We use two typical classification datasets to conduct the experiments:

- **MNIST** (LeCun et al. 2001): This dataset consists of \(28 \times 28 \) binary images with 60,000 training and 10,000
Abduced hypotheses. respectively. Different from the proposed datasets (we omit Omniglot because the results are quite similar). The dictionaries learned from source domains are used to code the data from target domains, then classification performance on target domains is evaluated. Here we report the results on MNIST and Omniglot_small_1 datasets (we omit Omniglot_small_2 because the results are quite similar). The results are shown in the bottom part of Table 1, where M2O denotes the adaptation from MNIST to Omniglot, and O2M denotes the inverse adaptation. From the results we can observe that LASIN with knowledge base stroke performs best

where P is the set of all ink points of a character C; $S = \{s_1, \ldots, s_k\}$ are the k ink-point clusters of C; $\text{cluster} = \{\text{kmeans, spectral}\}$ are the clustering approaches for kmeans and spectral respectively; $\text{cluster}(P, S, k)$ means S is obtained by clustering ink points P into k separate clusters. In the experiments we fixed $k = 2$, assuming that all characters should be split into 2 parts. The spectral clustering are compared because handwritten strokes can be regarded as 1-d manifolds embedded in a 2-d canvas.

The dictionary sizes are set at $|D| = 20, 50, 100, 200$, respectively. These sizes are not very large because we believe the effective dimension of handwritten characters should be small, involving some different strokes, their combinations and spacial relations. The hyper-parameters (turn limit and error threshold) of Algorithm 1 in the experiments are determined by cross-validation on training data.

The basic classifiers are multiclass SVMs with linear kernel implemented by libSVM (Chang and Lin 2011). We do not use complicated models because we try to keep the influence from classifier’s power to be as small as possible, so that we can ensure all improvements are gained by introducing different kinds of human knowledge. All statistical models are trained with default parameter settings due to the same reason. The performance are evaluated with 5-fold cross-validation.

Tasks & Results The first task in this experiment is classification, which evaluates the quality of learned dictionaries by their performance on supervised classification tasks. The results are shown in the upper part of Table 1. On MNIST datasets, the performance of SC, which is consistent with (Yu and Ng 2010), is always worse than the proposed LASIN approaches. The classification accuracy on Omniglot datasets are quite low because they have more than 600 data-insufficient classes. On these datasets, LASIN with knowledge base stroke still performs best among all the compared approaches.

The second task in this experiment is domain adaptation. The dictionaries learned from source domains are used to code the data from target domains, then classification performance on target domains is evaluated. Here we report the results on MNIST and Omniglot_small_1 datasets (we omit Omniglot_small_2 because the results are quite similar). The results are shown in the bottom part of Table 1, where M2O denotes the adaptation from MNIST to Omniglot, and O2M denotes the inverse adaptation. From the results we can observe that LASIN with knowledge base stroke performs best

Methodologies We adopt the routine of (Raina et al. 2007) to evaluate the learned dictionaries: they are used for coding the training and test data, then basic classifiers are trained and tested to evaluate the performance of each dictionary.

For LASIN, we adopt three kinds of knowledge base for logical abduction. The first one is the stroke definition in KB1, denoted as stroke. The second and third background knowledge bases kmeans and spectral basically talk about splitting characters into several parts by clustering all ink points for each image. They can be conveniently expressed by FOL knowledge base as well:

\[\text{parts}(C, S) \leftarrow \text{ink_points}(C, P), \text{cluster}(P, S, k). \] (3)

where P is the set of all ink points of a character C; $S = \{s_1, \ldots, s_k\}$ are the k ink-point clusters of C; $\text{cluster} = \{\text{kmeans, spectral}\}$ are the clustering approaches for kmeans and spectral respectively; $\text{cluster}(P, S, k)$ means S is obtained by clustering ink points P into k separate clusters. In the experiments we fixed $k = 2$, assuming that all characters should be split into 2 parts. The spectral clustering are compared because handwritten strokes can be regarded as 1-d manifolds embedded in a 2-d canvas.

The dictionary sizes are set at $|D| = 20, 50, 100, 200$, respectively. These sizes are not very large because we believe the effective dimension of handwritten characters should be small, involving some different strokes, their combinations and spacial relations. The hyper-parameters (turn limit and error threshold) of Algorithm 1 in the experiments are determined by cross-validation on training data.

The basic classifiers are multiclass SVMs with linear kernel implemented by libSVM (Chang and Lin 2011). We do not use complicated models because we try to keep the influence from classifier’s power to be as small as possible, so that we can ensure all improvements are gained by introducing different kinds of human knowledge. All statistical models are trained with default parameter settings due to the same reason. The performance are evaluated with 5-fold cross-validation.

Tasks & Results The first task in this experiment is classification, which evaluates the quality of learned dictionaries by their performance on supervised classification tasks. The results are shown in the upper part of Table 1. On MNIST datasets, the performance of SC, which is consistent with (Yu and Ng 2010), is always worse than the proposed LASIN approaches. The classification accuracy on Omniglot datasets are quite low because they have more than 600 data-insufficient classes. On these datasets, LASIN with knowledge base stroke still performs best among all the compared approaches.

The second task in this experiment is domain adaptation. The dictionaries learned from source domains are used to code the data from target domains, then classification performance on target domains is evaluated. Here we report the results on MNIST and Omniglot_small_1 datasets (we omit Omniglot_small_2 because the results are quite similar). The results are shown in the bottom part of Table 1, where M2O denotes the adaptation from MNIST to Omniglot, and O2M denotes the inverse adaptation. From the results we can observe that LASIN with knowledge base stroke performs best
in this task. The results of M2O show that if dictionary size is relatively small, the adapted dictionaries learned by LASIN are even better than unadapted ones in the classification task. A possible explanation is that the statistical induction on MNIST domain is more effective than the data insufficient Omniglot domain. An interesting conjecture is that, when dictionary size grows, the performance of strong-to-weak domain adaptations will decrease. This might be because when dictionary size grows, the extracted concepts from the strong domain become more and more ad-hoc in order to reduce the sparsity penalty. This conjecture worths a future investigation. Note that it also offers an evidence that model reuse can be very helpful rather than building a model from scratch in many situations (Zhou 2016).

Discussion

It is well acknowledged that human learning is more advanced than machine learning in several aspects. For example, owing to its ability to exploit an abundant supply of background knowledge, human can learn accurate models with a few training examples (Tenenbaum et al. 2011; Lake, Salakhutdinov, and Tenenbaum 2015). Since LASIN is proposed to exploit human knowledge, it is natural to ask whether can LASIN gain these benefits as human learning.

For the question on performance of the learned models, the indirect evaluation in previous experiments show that the representations learned by LASIN can boost the accuracy in supervised classification tasks. For the question on data requirement, we did some extra experiments on MNIST data, showing with Table 2. Because LASIN uses patch-based sparse coding, we also use patch-based SC for comparison. We sample 10,000 14 × 14 patches from all MNIST training images (which is far more than the training data used by LASIN) and used SC to learn patch dictionaries; then each training instance is split into 4 sub-images and each sub-image is coded with the learned dictionary for classification. If we compare them with LASIN according to the total length of the coded data, LASIN is always better than original patch-based SC. Even if we compare them according to patch dictionary sizes, LASIN is still comparable although its coded instances are just 1/4 of patched SC in total code length. Hence background knowledge indeed can help reduce the requirement of data amount.

Another interesting question is how does the quality of background knowledge affect the learning results. From the Omniglot results in Table 1 we can observe that, although the performance of stroke is still better than SC, kmeans and spectral are sometimes worse than SC. This is because the assumption on the number of clusters to be 2 is acceptable for Arabic numbers but not appropriate for Omniglot data. Since the background knowledge of stroke is a better explanation of the data structure (although in a higher level), it is not surprising that it is superior to other approaches. Therefore, a wrong background knowledge can degenerate the performance of learning. A common example in human cognition is illusion, which is believed to be caused by the contradiction of our background knowledge with real situations (Solso, MacLin, and MacLin 2013).

Therefore, how to obtain the FOL background knowledge base is crucial to LASIN. Besides of using user-defined Kβ, like SRL and PILP, it is possible to use ILP techniques to learn FOL rules that bridging symbolic knowledge and raw data (Dai, Muggleton, and Zhou 2015). Ideally, the background knowledge base should be maintained by the AI system itself during its development, e.g., a sequence of easy-to-hard learning tasks where the starting primitives (like ink/1) are taught by humans.

6 Conclusion

To exploit human knowledge when learning from raw data, in this paper we formulate a novel task concept extraction aiming at using FOL background knowledge to constrain the representation learning in raw feature space. Inspired by human cognition, we propose the LASIN approach which combines logical abduction and statistic induction. Experimental results on handwritten character datasets validate its effectiveness. Experiments also suggest that by exploiting human knowledge, LASIN can learn good representations with smaller data. LASIN is a general-purpose approach with sufficient flexibility in implementation, e.g., the sparse coding ingredient can be replaced by other representation learning techniques such as deep learning. The choice of background knowledge base is important, and will be studied in the future.
References

