
Combining Logical Abduction and Statistical Induction:
Discovering Written Primitives with Human Knowledge∗

Wang-Zhou Dai and Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China
{daiwz, zhouzh}@lamda.nju.edu.cn

Abstract

In many real tasks there are human knowledge expressed in
logic formulae as well as data samples described by raw fea-
tures (e.g., pixels, strings). It is popular to apply SRL or PILP
techniques to exploit human knowledge through learning of
symbolic data, or statistical learning techniques to learn from
the raw data samples; however, it is often desired to directly
exploit these logic formulae on raw data processing, like hu-
man beings utilizing knowledge to guide perception. In this
paper, we propose an approach, LASIN, which combines Log-
ical Abduction and Statistical INduction. The LASIN ap-
proach generates candidate hypotheses based on the abduc-
tion of first-order formulae, and then, the hypotheses are ex-
ploited as constraints for statistical induction. We apply the
LASIN approach to the learning of representation of written
primitives, where a primitive is a basic component in hu-
man writing. Our results show that the discovered primitives
are reasonable for human perception, and these primitives,
if used in learning tasks such as classification and domain
adaptation, lead to better performances than simply applying
feature learning based on raw data only.

1 Introduction
Unifying statistical and symbolic machine learning has
been mentioned more and more frequently (Russell 2015;
Tenenbaum et al. 2011). In fact, almost 30 years ago, Don-
ald Michie (1988) had already pointed out that the develop-
ment of machine learning should be able to manipulate sym-
bolic representation. Many approaches have been proposed
to fulfill this goal, which can be roughly categorized into two
types: Statistical Relational Learning (SRL) (Getoor and
Taskar 2007) and Probabilistic Inductive Logic Program-
ming (PILP) (De Raedt and Kersting 2008). Owing to the
ability to combine the syntactic and semantic expressive-
ness of first-order logic with the compositional semantics
of probabilistic model (Koller and Friedman 2009), these
approaches have achieved great success in many areas in-
cluding natural language processing (Wang, Mazaitis, and
Cohen 2013), robotics (Nitti, De Laet, and De Raedt 2014),
bioinformatics (De Maeyer et al. 2013), etc.
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Most approaches for unifying statistical and symbolic
learning were designed for applications in symbolic do-
mains (Russell 2015). In many real tasks, however, human
knowledge expressed in first-order logic (FOL) and data
samples described by raw features exist simultaneously. For
example, if we want to discover written primitives from im-
ages of handwritten characters, human knowledge about pen
strokes is worth being exploited (see Figure 1). On one hand,
this kind of background knowledge, which can be easily ex-
pressed with symbolic language like FOL, are difficult to
inject into common statistical learning (Getoor and Taskar
2007). On the other hand, typical approaches for unifying
statistics and logic are capable of exploiting the FOL ex-
pressed human knowledge, yet they are seldom designed for
raw data inputs (Russell 2015).

In this paper, we define the concept extraction prob-
lem. Similar to traditional representation learning (Bengio,
Courville, and Vincent 2013), the goal of concept extraction
is to learn a set of features from the raw input space. The dif-
ference lies in the fact is that concept extraction is facilitated
with an FOL knowledge base.

To address concept extraction, we draw inspiration from
human cognition. Perception, a human cognitive process
in charging of the organization, identification and interpre-
tation of raw sensory information (Schacter, Gilbert, and
Wegner 2011), faces this kind of problem at almost every
second in our life. According to Charles S. Peirce (1955),
human perception is a kind of abduction, i.e., a form of log-
ical inference going from an observation to a theory which
may account for the observation. As psychologists admitted,
Peirce’s theory provides “a midway between a seeing and a
thinking” (Tiercelin 2005; Magnani 2009).

Inspired by Peirce’s abductive perception theory, we pro-
pose the LASIN approach that combines Logical Abduction
and Statistical INduction for concept extraction. Firstly, we
exploit abductive logic theory (Kakas, Kowalski, and Toni
1992) to generate ground hypotheses from the raw inputs.
These hypotheses are then exploited as constraints for sta-
tistical induction to obtain a concept dictionary. Finally, the
concepts are tested on the raw data and get accepted or re-
vised for improvements. Experimental results show that the
proposed approach is able to exploit FOL knowledge base
and extract written primitives that are reasonable for human
perception, where a primitive is a basic component in hu-



(a) MNIST and Omniglot datasets.

(b) Results of Sparse Coding. (c) Results of LASIN.

Figure 1: (a): Examples of handwritten character datasets. (b)
and (c): Dictionaries extracted from MNIST without/with knowl-
edge of strokes.

man writing. Furthermore, the primitives extracted with ap-
propriate background knowledge can be beneficial to ma-
chine learning tasks such as classification and domain adap-
tation. Although the experiments are conducted on hand-
written data, the LASIN approach is applicable to general
problems as long as the human knowledge and raw data can
be bridged by FOL formulae.

The rest of this paper is organized as follows: We first
introduce the related works and formal definition of the con-
cept learning task; then the details of LASIN algorithm are
described; finally we report the empirical evaluations with
discussions and then conclude.

2 Related Works
Several SRL/PILP approaches have been proposed to an-
alyze images or handwritten data (Antanas et al. 2014;
Shivram et al. 2014). These approaches could not directly
handle the data represented by raw features. They usually
perform feature extractions on the raw data at first, and then
use statistical models to discover the symbols before rela-
tional learning. There are also approaches using statistical
learning after logic learning (Dai and Zhou 2015), which
could not be directly applied on raw data either.

Representation learning is a class of approaches that learn
representations of the data, aiming at the extraction of use-
ful information when building classifiers or other predic-
tors (Bengio, Courville, and Vincent 2013). These ap-
proaches have achieved great success in practice. Many of
them have been successfully applied to handwritten charac-
ter recognition tasks, such as sparse coding (Lee et al. 2007;
Olshausen and Field 1996) , manifold learning (Yu, Zhang,
and Gong 2009), deep neural networks (Cireşan et al. 2010).
Most of representation learning techniques are based on sta-
tistical optimization that is subsymbolic and can hardly in-
troduce symbolic knowledge like humans (Fiser et al. 2010).

Recent progress in artificial intelligence (AI) has renewed
interest in building systems that learn and think like peo-
ple (Lake et al. 2016). A representative work in this branch

similar to this paper is (Lake, Salakhutdinov, and Tenen-
baum 2015), which learns the concept of strokes through
induction of Bayesian programs. The difference lies in the
fact that their inputs and background knowledge are not raw
pixels and FOL but pen trajectories.

This paper focuses on exploiting FOL-represented human
knowledge in raw data processing like abductive percep-
tion. We apply the proposed LASIN on handwritten data
in this paper, since Douglas Hofstadter had suggested that
“the problem of recognizing characters in all the ways peo-
ple do contains most if not all of the fundamental challenges
of AI” (Hofstadter 1985).

Recently the concept “learnware” is proposed (Zhou
2016), which is a pre-trained reusable model facilitated by
specifications to be matched with user requests. The user
requests deliver task requirement, actually a kind of knowl-
edge, whereas logic description is an important option of
composing the specifications/requests. Thus, studying the
usage of logic formulae in statistical learning will also help
explore some learnware implementation possibilities.

3 Problem Setting
In this section we formally present the task of concept ex-
traction. Intuitively, concept extraction constrains the ex-
tracted features to be coherent with a well-defined back-
ground knowledge base. In this paper, we choose first-order
logic (FOL) as the language of background knowledge.

A first-order alphabet is composed of constants, variables,
functions, predicates, quantifiers and connectives. Constants
represent objects in domain, e.g., “1” and “anna”. Vari-
ables range over the constants, e.g., “X”, and “Person”.
Functions represent mappings from tuples of objects to ob-
jects, e.g., “s(X)” can be used to represent X + 1. Pred-
icates represent relations among objects or attributes, e.g.,
“friends(X,Y )” means X and Y are friends. Quantifiers
“∀” and “∃” constrain the range of variables. “∀X(p(X))”
and “∃X(p(X))” are identical to say “p(X)” is true for all
X and some X , respectively. Connectives are “←” for im-
plication, “∧” for conjunction, “∨” for disjunction, “¬” for
negation and “=” for equality. A term is a constant, a vari-
able or a function symbol immediately followed by a brack-
eted n-tuple of terms, e.g., “bob”, “X” and “s(s(s(0)))”.
An atom is a predicate symbol applied to a tuple of terms,
e.g., “greater than(X, 2)”. A term or atom is said to be
ground if and only if it does not contain any variable. For-
mulae are inductively defined by the following rules: 1)
if P is a predicate symbol and T1, . . . , Tn are terms then
p(T1, . . . , Tn) is a formula; 2) if φ is a formula, then ¬φ
is a formula; 3) if φ and ψ are formulae, then φ ← ψ
is a formula, and similar rules apply to other binary log-
ical connectives; 4) if φ is a formula and X is a vari-
able, then ∀X(φ) and ∃X(φ) are formulae. For example,
∀X(natural(X) ← integer(X) ∧ X ≥ 0) is a first-order
logical formula defining natural numbers. A background
knowledge base KB is a set of first-order formulae, and
a formula t satisfying KB is denoted as KB � t, e.g., if
KB is the previous definition of natural number, we have
KB � natural(1) and KB 2 natural(−9).



Concept extraction is formally defined as follows.
The input consists of a set of training instances x =
{x(1), . . . , x(m)} with a background knowledge base KB,
where x(i) ∈ Rn; KB is a set of first-order logic formulae.
The task is to extract a dictionary D = {b1, . . . , bs} from
x such that x can be accurately reconstructed by D, where
each basis vector bj ∈ Rn is a concept corresponding to
KB, i.e., ∃ predicate p ∈ KB such that KB � p(bj).

Concept extraction can be seen as an analogue to human
perception, for example:
Example 1 Suppose we are seeing images of handwritten
Arabic numbers. Typical background knowledge we hold is
that characters are written stroke by stroke. We also know
that strokes are continuous ink trajectories. In order to be
written smoothly, every sub-stroke should not have drastic
direction change. With this knowledge, we can easily ac-
complish two tasks: i) discover commonly appeared written
primitives and use their spacial relations to code the char-
acters; More importantly, ii) the discovered primitives can
be of help for learning other handwritten characters.
Background knowledge in this example can be conveniently
expressed by an FOL knowledge base:

KB1 :

∀S(stroke(S)← S = {P1, P2, . . .}
∧ sub strk(P1, P2, P3)

∧ sub strk(P2, P3, P4) ∧ · · · ).
∀A∀B∀C(sub strk(A,B,C)←

ink(AB) ∧ ink(BC)

∧ angle(AB,BC) < α).

(1)

where stroke(S) determines whether a point sequence S =
{P1, P2, . . .} forms a trajectory of pen stroke, and each point
Pi = (Xi, Yi) is a coordinate on image; sub strk(A,B,C)
is sub-stroke constraint on two sequential ink segments AB
and BC; ink(AB) is true when there exists ink on line seg-
ment AB (with end points A and B); angle(AB,BC) cal-
culates the angle between the two vectors; α is a positive
number (e.g. π2 ) to limit the turning angle from AB to BC.

The main challenge for concept extraction is how to con-
strain the searching process in raw feature space with KB.
Firstly, general FOL constraints are complicated and mostly
indifferentiable for statistical optimization. Secondly, raw
data samples usually distribute in Rn which contains an
infinite number of possible groundings for symbolic mod-
els (Russell 2015).

4 The LASIN Approach
To tackle the concept extraction task, we propose the LASIN
approach. The main idea is to constrain the statistical learn-
ing by feeding it with specific input data filtered by KB.

We follow the framework of active hypothesis-testing pro-
cess (Pyszczynski and Greenberg 1987). It is a problem
solving process where a human encounters novel or unex-
pected events, which majorly consists of several sequential
phases: 1) selection of a hypothesis for testing; 2) search for
information relevant to the hypothesis; 3) assessment of the

Algorithm 1: LASIN
Input : Training instances x; FOL knowledge base KB.
Output: A dictionary D = {dj} of target concepts.

1 D0 = Φ;
2 while t < turn limit or ||error|| > threshold do

/* test the dictionary learned from
previously learned dictionary */

3 x′ = Reconstruct(Dt−1,x);
4 error = loss(x′,x);

/* logic abduction */
5 Hypotheses = Abduce (error, KB);

/* statistical induction */
6 Dt = SparseCoding(Hypotheses);
7 t = t + 1;
8 end
9 D = Dt;

fit between the pattern of information implicated by the hy-
pothesis and accessed during the information search stage;
4) evaluation of the fit, accept, reject or update the hypothe-
sis. An outline of the proposed algorithm is shown as Algo-
rithm 1.

Logical Abduction
The first step of LASIN is to generate ground hypotheses that
account for raw data samples in x by logical abduction.

According to Charles S. Peirce, Abduction is a kind of
logic inference. Different to deduction (from general rules to
particular cases) and induction (from cases to rules), abduc-
tion is the inference process of forming a ground hypothesis
that explains observed phenomena (Peirce 1955).

Abduction does not only involve in symbolic reason-
ing. In fact, vision is a good example of human applying
abductive reasoning in subsymbolic scenarios (Park 2015;
Dai, Muggleton, and Zhou 2015). For example, when we
see a picture of a car, the pixels just tell us about its color
and shape on one side; however we still can guess about its
appearance in unobserved directions. Furthermore, we can
even figure out its model type and many other information.
Obviously, human can abduce logical symbols (e.g., model
types) with just raw visual inputs (e.g., pixels).

Logical abduction has been applied to symbolic machine
learning before (Tamaddoni-Nezhad et al. 2006). Here we
give a brief introduction to abductive logic theory (Kakas,
Kowalski, and Toni 1992):
Definition 1 Given an abductive logic theory (P,A) where
P is a logic program, A is set of abducible predicates in the
logic program P . For an observation O, ∆ is an abductive
explanation consisting of a set of ground abducible atoms
on the predicates A such that P ∪∆ � O.

For knowledge base KB1, we can define an abductive
logic theory like this: the observations O are the images of
characters x(i) ∈ x; the set of abducible predicate A =
{Stroke/1}; the abductive program P is an FOL clause
simply saying “a character is composed by strokes”:

∀C(character(C)←
C = {S1, S2, . . .} ∧ Stroke(S1) ∧ . . .). (2)



Observing a fact character(x(i)), the logical abduction pro-
cedure will try to abduce a possible explanation ∆(i) – in
this example, a sequence of “strokes” in x(i). When each
time the abduction solver tries to find a ground example of
Stroke(S), it will consult its definition in KB1 and finally
queries about the most basic facts such as ink line segments
and ink points using Logical Vision (Dai, Muggleton, and
Zhou 2015). To increase the efficiency, we apply greedy
search for hypotheses abduction and use random sampling
for basic facts (ink points) discovery. The time complexity
of hypothesis abduction on each instance is O(s log s) as it
is implemented with a recursive logic program, where s is
the number of sampled ink points on an instance.

The abduced groundings form a conjunction to explain
the raw dataset x. It is worth noticing that we should not
simply equate abduction with inference to the best expla-
nation because the result of abduction is not unique, which
implies that there must be other processes between logical
abduction and getting the best explanation. Here we suggest
to take statistical induction as a candidate.

Statistical Induction
After the logical abduction, h = {∆} is obtained. It is the
set of all abductive explanations from the training instances
x. Then, a statistical induction procedure is called to select
the “best hypotheses”. Finally, the selected hypotheses are
tested in the original raw data and get accepted or revised.

In this paper, we use Sparse Coding (SC) (Lee et al. 2007)
for statistical induction.1. The optimization objective of SC
encourages each input to be reconstructed well by a set of
sparse codes and the extracted dictionary.

The statistical induction tries to find a small set of “best
hypotheses”, and the resulted objective function can be writ-
ten as follows:

min
b,a

∑
k

||h(k) −
∑
j

a
(k)
j bj ||22 + β||a(k)||1

s.t. ||bj ||2 ≤ 1, ∀j ∈ 1, . . . , s.

where ∀h(k)∃x(x ∈ x ∧ h(k) ⊂ x ∧KB � p(h(k))).

where h(k) ⊂ x means h(k) is a ground explanatory hy-
pothesis abduced from x; p is the predicate of target con-
cept in KB; D = {b1, b2, . . . , bs} are the basis vectors
(dictionary) with each bj ∈ Rn as an extracted concept;
a = {a(1), a(2), . . . , a(n)} are the codes; a(k)j is the acti-
vation of the basis bj for input h(k). The learned bases are

1Although using Sparse Coding may sacrifice some background
knowledge coherency of the learned dictionary (with a low like-
lihood because we use patch-based SC), it benefits the experi-
ments on unbiasedness and convenience. In order to reduce the
bias of concept extraction to ensure the learned concepts be gen-
eral enough for domain adaptation, we do not use feature selec-
tion since most of them are supervised. Furthermore, it is natu-
ral to design a comparison between unsupervised representation
learning with/without FOL background knowledge on raw pixel
image inputs, e.g., “abduction/no abduction+SC”. If we use ab-
duction+selection, it will be difficult to design experiments such as
“no abduction+selection” for raw data inputs.

abstractions of h(k) and can be seen as the induced “best ex-
planations”. Because {h(k)} are obtained from logical ab-
duction, they are guaranteed to satisfy the constraint in this
objective function.

The final step of LASIN is to test the quality of the ab-
stracted hypotheses D. More precisely, it will use D to re-
construct the original data x and compute the error of the
reconstructed x′. Depending on the quality of x′, the algo-
rithm will choose either to revise the hypotheses h by doing
more abductions based on the difference between x and x′

or to return current D as output.

5 Empirical Evaluation
In this section we report two experimental results of LASIN
on 3 real handwritten characters datasets. Some examples of
the datasets and results are illustrated with Figure 1 and 3.
We compare LASIN with original sparse coding as the base-
line since it is a widely used representation learning ap-
proach and has been proved to be successful in practice (Lee
et al. 2007).

The sparse coding and other clustering models in the ex-
periments are implemented by the mlpack toolbox (Curtin et
al. 2013). Logical abduction is implemented by using SWI-
Prolog (Wielemaker et al. 2012).

Devanagari Primitives Discovery
We use HPL-Devanagari (Bharath and Madhvanath 2010)
dataset in this task. This dataset contains approximately
270 samples of each of 111 Devanagari characters written
by over 100 native Hindi speakers. Each Devanagari char-
acter is constructed by some primitive strokes (Kopparapu
and Lajish 2014), shown in Figure 2. Different to OCR
task which uses writing trajectories to recognize the char-
acters, in this experiment, we only use the raw images to
extract |D| = 200 handwritten primitives from the charac-
ters. We compare the stroke (Knowledge base KB1) based
LASIN with original sparse coding trained with same input
data and default parameters.

Samples of the results of LASIN and sparse coding are
shown in Figure 3c and Figure 3d, respectively. Samples of
the ground hypotheses abduced by stroke based LASIN are
shown in Figure 3b. Comparing Figure 2 with Figure 3c
and 3d, we can observe that augmented with human knowl-
edge about strokes, LASIN can extract written primitives that
are more reasonable for human cognition. This is because
the result of logical abduction (as in Figure 3b) constrain
statistical induction to search for models in a local area that
close to human perceived concepts in KB. Although the
abduced ground hypotheses in Figure 3b are more clear than
the dictionary produced by statistical induction in Figure 3c,
the later is more general as it contains many sub-strokes
which can compose more complicated written primitives.

Classification and Domain Adaptation
Datasets We use two typical classification datasets to con-
duct the experiments:

• MNIST (LeCun et al. 2001): This dataset consists of
28 × 28 binary images with 60,000 training and 10,000



Figure 2: Human defined Devanagari primitives, reprinted
from (Kopparapu and Lajish 2014).

(a) Devanagari characters. (b) Abduced hypotheses.

(c) Result of LASIN. (d) Result of Sparse Coding.

Figure 3: Samples of results of Devanagari task.

test instances. In order to determine whether LASIN has
the ability to learn from small data like human beings, we
randomly sample 100 images for each class to create a
sub-sampled training data.

• Omniglot (Lake, Salakhutdinov, and Tenenbaum 2015):
Omniglot dataset consists of 105 × 105 binary images
across 1628 classes with just 20 images per class. In order
to make this domain transferable with MNIST, we rescale
the Omniglot data to 28 × 28 images. The dictionaries
are trained on small datasets Omniglot small 1 and Om-
niglot small 2 respectively. Different from the proposed
model in (Lake, Salakhutdinov, and Tenenbaum 2015),
we just use the raw images but not the pen trajectories.

Methodologies We adopt the routine of (Raina et al. 2007)
to evaluate the learned dictionaries: they are used for coding

the training and test data, then basic classifiers are trained
and tested to evaluate the performance of each dictionary.

For LASIN, we adopt three kinds of knowledge base for
logical abduction. The first one is the stroke definition in
KB1, denoted as stroke. The second and third background
knowledge bases kmeans and spectral basically talk about
splitting characters into several parts by clustering all ink
points for each image. They can be conveniently expressed
by FOL knowledge base as well:

parts(C, S)← ink points(C,P ),

cluster(P, S, k).
(3)

where P is the set of all ink points of a character C; S =
{s1, . . . , sk} are the k ink-point clusters of C; cluster =
{kmeans, spectral} are the clustering approaches for
kmeans and spectral respectively; cluster(P, S, k) means
S is obtained by clustering ink points P into k separate clus-
ters. In the experiments we fixed k = 2, assuming that all
characters should be split into 2 parts. The spectral clus-
tering are compared because handwritten strokes can be re-
garded as 1-d manifolds embedded in a 2-d canvas.

The dictionary sizes are set at |D| = 20, 50, 100, 200, re-
spectively. These sizes are not very large because we believe
the effective dimension of handwritten characters should be
small, involving some different strokes, their combinations
and spacial relations. The hyper-parameters (turn limit and
error threshold) of Algorithm 1 in the experiments are deter-
mined by cross-validation on training data.

The basic classifiers are multiclass SVMs with linear ker-
nel implemented by libSVM (Chang and Lin 2011). We do
not use complicated models because we try to keep the in-
fluence from classifier’s power to be as small as possible,
so that we can ensure all improvements are gained by in-
troducing different kinds of human knowledge. All statisti-
cal models are trained with default parameter settings due to
the same reason. The performance are evaluated with 5-fold
cross-validation.

Tasks & Results The first task in this experiment is clas-
sification, which evaluates the quality of learned dictionar-
ies by their performance on supervised classification tasks.
The results are shown in the upper part of Table 1. On
MNIST datasets, the performance of SC, which is consistent
with (Yu and Ng 2010), is always worse than the proposed
LASIN approaches. The classification accuracy on Omniglot
datasets are quite low because they have more than 600 data-
insufficient classes. On these datasets, LASIN with knowl-
edge base stroke still performs best among all the compared
approaches.

The second task in this experiment is domain adapta-
tion. The dictionaries learned from source domains are used
to code the data from target domains, then classification per-
formance on target domains is evaluated. Here we report the
results on MNIST and Omniglot small 1 datasets (we omit
Omniglot small 2 because the results are quite similar). The
results are shown in the bottom part of Table 1, where M2O
denotes the adaptation from MNIST to Omniglot, and O2M
denotes the inverse adaptation. From the results we can ob-
serve that LASIN with knowledge base stroke performs best



Size |D| = 20 |D| = 50 |D| = 100 |D| = 200

Method SC stroke kmeans spectral SC stroke kmeans spectral SC stroke kmeans spectral SC stroke kmeans spectral

MNIST 90.37 91.66 90.48 90.82 93.89 94.88 94.47 94.79 95.23 96.27 96.19 96.05 95.77 97.01 96.91 96.97

OS1 16.46 16.24 15.83 15.33 21.27 21.82 20.92 21.09 23.48 24.74 23.26 23.45 25.40 26.64 25.94 26.37

OS2 15.12 16.65 17.37 17.43 22.61 22.90 21.12 21.05 24.74 25.07 24.10 23.98 25.63 26.29 26.00 26.21

M2O 19.36 20.69 19.09 18.60 20.39 23.38 20.86 21.09 20.43 23.19 20.93 21.48 18.62 24.63 22.57 22.82

O2M 87.72 88.14 87.98 88.06 93.08 93.69 93.44 93.67 96.03 96.00 96.11 95.81 96.11 96.39 96.19 96.22

Table 1: Percentage of accuracy in classification (MNIST, OS1 and OS2) and domain adaptation (M2O and O2M) tasks.

|D| 5× 4 13× 4 20× 4 25× 4 50× 4 100×4

ACC 85.02 91.62 92.69 93.94 94.98 96.41

Table 2: Accuracy of patched Sparse Coding on MNIST Dataset.

in this task. The results of M2O show that if dictionary
size is relatively small, the adapted dictionaries learned by
LASIN are even better than unadapted ones in the classi-
fication task. A possible explanation is that the statistical
induction on MNIST domain is more effective than the data
insufficient Omniglot domain. An interesting conjecture is
that, when dictionary size grows, the performance of strong-
to-weak domain adaptations will decrease. This might be
because when dictionary size grows, the extracted concepts
from the strong domain become more and more ad-hoc in
order to reduce the sparsity penalty. This conjecture worths
a future investigation. Note that it also offers an evidence
that model reuse can be very helpful rather than building a
model from scratch in many situations (Zhou 2016).

Discussion
It is well acknowledged that human learning is more ad-
vanced than machine learning in several aspects. For ex-
ample, owning to its ability to exploit an abundant supply
of background knowledge, human can learn accurate mod-
els with a few training examples (Tenenbaum et al. 2011;
Lake, Salakhutdinov, and Tenenbaum 2015). Since LASIN
is proposed to exploit human knowledge, it is natural to ask
whether can LASIN gain these benefits as human learning.

For the question on performance of the learned models,
the indirect evaluation in previous experiments show that the
representations learned by LASIN can boost the accuracy in
supervised classification tasks. For the question on data re-
quirement, we did some extra experiments on MNIST data,
showing with Table 2. Because LASIN uses patch-based
sparse coding, we also use patch-based SC for comparison.
We sample 10, 000 14 × 14 patches from all MNIST train-
ing images (which is far more than the training data used
by LASIN) and used SC to learn patch dictionaries; then
each training instance is split into 4 sub-images and each
sub-image is coded with the learned dictionary for classifi-
cation. If we compare them with LASIN according to the
total length of the coded data, LASIN is always better than
original patch-based SC. Even if we compare them accord-
ing to patch dictionary sizes, LASIN is still comparable al-

though its coded instances are just 1/4 of patched SC in total
code length. Hence background knowledge indeed can help
reduce the requirement of data amount.

Another interesting question is how does the quality of
background knowledge affect the learning results. From the
Omniglot results in Table 1 we can observe that, although
the performance of stroke is still better than SC, kmeans
and spectral are sometimes worse than SC. This is because
the assumption on the number of clusters to be 2 is accept-
able for Arabic numbers but not appropriate for Omniglot
data. Since the background knowledge of stroke is a better
explanation of the data structure (although in a higher level),
it is not surprising that it is superior to other approaches.
Therefore, a wrong background knowledge can degenerate
the performance of learning. A common example in human
cognition is illusion, which is believed to be caused by the
contradiction of our background knowledge with real situa-
tions (Solso, MacLin, and MacLin 2013).

Therefore, how to obtain the FOL background knowl-
edge base is crucial to LASIN. Besides of using user-defined
KB, like SRL and PILP, it is possible to use ILP techniques
to learn FOL rules that bridging symbolic knowledge and
raw data (Dai, Muggleton, and Zhou 2015). Ideally, the
background knowledge base should be maintained by the
AI system itself during its development, e.g., a sequence
of easy-to-hard learning tasks where the starting primitives
(like ink/1) are taught by humans.

6 Conclusion

To exploit human knowledge when learning from raw data,
in this paper we formulate a novel task concept extraction
aiming at using FOL background knowledge to constrain the
representation learning in raw feature space. Inspired by hu-
man cognition, we propose the LASIN approach which com-
bines logical abduction and statistic induction. Experimen-
tal results on handwritten character datasets validate its ef-
fectiveness. Experiments also suggest that by exploiting hu-
man knowledge, LASIN can learn good representations with
smaller data. LASIN is a general-purpose approach with suf-
ficient flexibility in implementation, e.g., the sparse coding
ingredient can be replaced by other representation learning
techniques such as deep learning. The choice of background
knowledge base is important, and will be studied in the fu-
ture.
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