
Collisions are Helpful for Computing
Unique Input-Output Sequences∗

Chao Qian Yang Yu Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

{qianc,yuy,zhouzh}@lamda.nju.edu.cn

ABSTRACT
Computing unique input-output sequences (UIOs) from finite state
machines (FSMs) is important for conformance testing in software
engineering, where evolutionary algorithms (EAs) have been found
helpful. Previously, by using a fitness function called W-fitness,
(1+1)-EA was theoretically shown to be superior to random search
on some FSM instances. Motivated by the observation that many
plateaus exist in the fitness landscape of the W-fitness function,
in this paper, we propose a new fitness function called C-fitness
which is able to override the plateaus through exploiting collisions
among the states of FSMs. We theoretically analyze the running
time of (1+1)-EA on two problem classes. Our results show that
the performance of (1+1)-EA using C-fitness is generally better
and never worse than that using W-fitness in our studied cases,
implying the importance of exploiting problem structures.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Theory

Keywords
Evolutionary algorithms, fitness function, running time, software
engineering

1. INTRODUCTION
Conformance testing, which verifies whether the software sys-

tem meets the specified requirements, is an important task in soft-
ware engineering. Essentially, the state verification of conformance
testing is to compute unique input-output sequences (UIOs) from
finite state machines (FSMs); this problem is NP-hard [5] and thus
tackled often by heuristic approaches. Computing UIO sequences
can be reformulated as a search problem, and therefore evolution-
ary algorithms (EAs) have been applied [3, 1].

Definition 1 (FSM [5]) An FSM M is a quintuple M = (I, O, S, δ,
λ), where I and O are the sets of input and output symbols, respec-
tively, S is the state set, δ :S×I→S is the state transition function
and λ :S×I→O is the output function.

∗This research was supported by the NSFC (60903103, 61021062).

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

Definition 2 (UIOs [5]) For an FSM M = (I, O, S, δ, λ), an UIO
sequence of state s is an input sequence x such that λ(s, x) 6=
λ(s′, x), for any s′ ∈ S − {s}.

When applying EAs to compute UIOs, a solution is usually rep-
resented as a sequence of length-n input symbols, since all the con-
sidered FSM instance classes have the UIO sequence of length n.
Among the several types of fitness functions which have been used
to measure the goodness of the solutions [1, 3, 6], Lehre and Yao
[6] used the following one; we call it W-fitness.

Definition 3 (W-fitness [6]) For computing UIO sequence of state
s on an FSM M = (I, O, S, δ, λ), the fitness of an input sequence
x is fw(x) = |{s′ | λ(s′, x) 6= λ(s, x), s′ ∈ S}|.

Empirically, EAs can outperform random search on complex and
large FSMs [1, 3]. There are also theoretical studies disclosing the
behaviors of EAs on computing UIOs. For example, Lehre and Yao
analyzed the influence of the EA configurations on the running time
for computing UIOs [7], and disclosed that (1+1)-EA is superior to
random search in computing UIOs [6].

2. MAIN RESULTS
First, we propose the C-fitness function by exploiting collisions

among the states for computing UIOs.

Definition 4 (Collision) Given an FSM M = (I, O, S, δ, λ), an
input sequence x has a collision between states s and s′ if λ(s, x) =
λ(s′, x) ∧ δ(s, x) = δ(s′, x). For any s and x, let x̂i be the prefix
of x with length i. The collision time φ(s, x) = max{i|0 ≤ i ≤
|x|, x̂i has no collision between s and other states}.

Definition 5 (C-fitness) For computing UIO sequence of state s
on an FSM M = (I, O, S, δ, λ), the fitness of an input sequence x
is fc(x) = fw(x) + φ(s, x).
In contrast to the W-fitness function, the C-fitness function in-
corporates the collision time, and therefore contains more collision
information. The UIO sequences of state s have the maximal C-
fitness value (n− 1 + |x|).

Next, we define two FSM instance classes and compare the run-
ning time of (1+1)-EA using C-fitness and W-fitness, respec-
tively. Denote LO(∗) for the length of the longest-common-prefix
and H(∗) for the Hamming distance between the sequence ∗ and
the UIO sequence. Let n be the length of the input sequence, m be
the cardinality of the input symbol set I .

Definition 6 (With-Collision FSM Instance Class) Assuming only
one UIO sequence exists for a state, FSM in this class satisfies that,
for some state s, φ(s, x) = LO(x).
That is, the input sequence x has a collision as soon as its symbol
is different from the corresponding symbol of the UIO sequence.

Theorem 1 In the with-collision FSM instance class, if W-fitness
assigns the same value to all solutions except the UIO sequence,
the expected running time of (1+1)-EA on C-fitness is Θ(mn2)
while that on W-fitness is Θ(mn).

Theorem 2 In the with-collision FSM instance class, if it holds
for W-fitness that fw(x) > fw(x′) if LO(x) > LO(x′), and
fw(x) = fw(x′) if LO(x) = LO(x′), then the expected running
time of (1+1)-EA on C-fitness and W-fitness are both Θ(mn2).

Theorem 3 In the with-collision FSM instance class, if it holds for
C-fitness that fc(x) > fc(x′) if H(x) > H(x′) or H(x) =
H(x′) ∧ LO(x) > LO(x′), then the expected running time of
(1+1)-EA on C-fitness and W-fitness are both Θ(((m− 1)n)n).

The above theorems are proved by considering the structural
similarity between the fitness (W-fitness or C-fitness) functions
and the well-studied Trap , LeadingOnes and Needle functions. The
analysis of (1+1)-EA on these three functions by [2] is used here to
analyze (1+1)-EA on the above problems. We give three example
FSM instances which satisfy Theorems 1 to 3, in Figures 1 to 3,
respectively.

We conjecture that, in the with-collision FSM instance class, if
it holds for W-fitness that fw(x) < fw(x′) if H(x) < H(x′),
C-fitness can decrease the difficulty of W-fitness for (1+1)-EA, or
they are with the same hardness. Figure 4 presents an example FSM
instance. It can be proved that W-fitness on the SPC FSM instance
leads to Θ(nn) expected running time, as W-fitness resembles the
Trap function [2] here; while C-fitness leads to O(n3) expected
running time, as C-fitness resembles the SPCn function [4] here.

Proposition 1 The expected running time of (1+1)-EA on the C-
fitness function for SPC FSM instance is upper-bounded by O(n3).

Proof. The C-fitness function for SPC FSM instance is

fc(x) =





3n− 1, if x = 1n−10

n, if x = 1n

n + 1, if x = 1i0n−i, 0 ≤ i < n− 1

1 +
∑n

i=1(1− xi) +
∑n

i=1

∏i
j=1 xj , otherwise.

(1+1)-EA reaches the path 0n, 10n−1, . . . , 1n−10 within O(n log n)
steps. After that, it needs O(n3) expected running time to reach the
optimal solution 1n−10 [4]. ¥

Definition 7 (The Without-Collision FSM Instance Class) FSM in
this class satisfies that ∀x, φ(s, x) = n when computing the UIO
sequence for some state s.

That is, no collision occurs between state s and other states for any
input sequence. Figures 5 and 6 give two example FSM instances
of this class.

Theorem 4 In the without-collision FSM instance class, (1+1)-EA
on the C-fitness function behaves as same as W-fitness function.

3. CONCLUSION
In this paper, by exploiting collisions among states, we propose

the C-fitness function which is able to override the plateaus of the
W-fitness function and thus make problems swift from hard to easy
for (1+1)-EA. Our results show that C-fitness function is generally
better and never worse than W-fitness function; this suggests that
an adequate problem formulation is important and acceleration can
be obtained by exploiting problem structures. Detailed proofs will
be presented in a longer version.

/ack /ack /ack /ack

EOL/found

I \{ }/ack I \{EOL}/ack

1s 2s 1ns
ns1w 2w 2nw 1nw

1nwI \{ }/ack 2w

I \{ }/ack 1w

Figure 1: Sequence detector FSM (With-Collision Class)

1/a

I \{1}/a I \{1}/a I \{1}/a

I \{1}/a 1/a 1/a 1/a

1/b

1s 2s
n

s 1n
s

Figure 2: LeadingOnes FSM (With-Collision Class)

0/a

0/a

0/a 0/a
1/a 1/a 1/a 1/a

1/a 1/a 1/a 1/a

0/a 0/a 0/a 0/a

1/b

0/c

1
s

2
s n-1

s ns

1, 1nq
1,nq

1/a 1/a 1/a 1/a

0/a 0/a 0/a 0/a
2 ,1nq 2 ,2nq

2 , 1n nq 2 ,n nq 0/c

.

1,1
q

1,2
q

. . .

. . .

. . .

. . .

Figure 3: Deceptive FSM (With-Collision Class)

0/a

0/a

0/a 1/a
1/a 1/a 1/a 1/a

1/a 1/a 1/a 1/a

0/a 0/a 0/a 0/a

0/b
0/c

1
s

2
s

1ns ns

1
q

2
q 1nq

nq

Figure 4: SPC FSM (With-Collision Class)

1/incr 1/incr 1/incr 1/incr

1/reset

I \{1}/const I \{1}/const I \{1}/const I \{1}/const

1s 2s 1n
s

n
s

Figure 5: Modulo-n counter FSM (Without-Collision Class)

1/a

0/a

1/a
1/a

1/a

0/a 0/a 0/a

0/a 0/a 0/a

1/a 1/a 1/a

0/b 1/b
1
s

2
s

1ns ns

2
q

1nq nq

Figure 6: Double modulo-n counter FSM (Without-Collision)

4. REFERENCES
[1] K. Derderian, R. Hierons, M. Harman, and Q. Guo. Automated unique

input output sequence generation for conformance testing of FSMs.
The Computer Journal, 49(3): 331–344, 2006.

[2] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1-2):
51–81, 2002.

[3] Q. Guo, R. Hierons, M. Harman, and K. Derderian. Computing unique
input/output sequences using genetic algorithms. In Proc. FATES’03,
pages 164–177, Montreal, Canada, 2004.

[4] T. Jansen and I. Wegener. Evolutionary algorithms - how to cope with
plateaus of constant fitness and when to reject strings of the same
fitness. IEEE Trans. Evolutionary Computation, 5(6): 589–599, 2001.

[5] D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines. Proceedings of the IEEE, 84(8): 1090–1123, 1996.

[6] P. Lehre and X. Yao. Runtime analysis of (1+1)-EA on computing
unique input output sequences. In Proc. CEC’07, pages 1882–1889,
Singapore, 2007.

[7] P. K. Lehre and X. Yao. Crossover can be constructive when
computing unique input output sequences. In Proc. SEAL’08, pages
595–604, Melbourne, Australia, 2008.

