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Abstract

Choosing an appropriate kernel is one of the key prob-
lems in kernel-based methods. Most existing kernel selec-
tion methods require that the class labels of the training
examples are known. In this paper, we propose an adap-
tive kernel selection method for kernel principal compo-
nent analysis, which can effectively learn the kernels when
the class labels of the training examples are not available.
By iteratively optimizing a novel criterion, the proposed
method can achieve nonlinear feature extraction and unsu-
pervised kernel learning simultaneously. Moreover, a non-
iterative approximate algorithm is developed. The effec-
tiveness of the proposed algorithms are validated on UCI
datasets and the COIL-20 object recognition database.

1 Introduction

As a powerful nonlinear feature extraction method, ker-
nel principal component analysis (KPCA) [10] has been
widely used in many applications [7]. The essence of KPCA
is to perform principal component analysis (PCA) in the
transformed high-dimensional feature space through an im-
plicit nonlinear mapping from the original input space to
the feature space. Here it is not necessary to know the
explicit form of the nonlinear mapping and only the in-
ner products between two data points in the feature space
are needed. Since those inner products in feature space
can be equivalently and efficiently computed by a kernel
function in the original input space, KPCA elegantly avoids
the ‘curse of dimensionality’ encountered by many classi-
cal algorithms working in high-dimensional space. How-

ever, like other kernel-based methods such as support vec-
tor machines (SVM) [7] and kernel discriminant analysis
(KDA) [7], the performance of KPCA is greatly affected by
the choice of the kernel and parameters. In other words, the
selection of the optimal kernel and parameters is crucial for
KPCA to obtain good performance.

Early research mainly focus on the selection of param-
eters for a certain kernel [2]. There are two widely used
approaches for this purpose. The first approach empirically
chooses a series of candidate values for the concerned ker-
nel parameter, executes the learning algorithm using every
candidate value, and finally assigns the value corresponding
to the best performance to the kernel parameter. The second
approach is the well-known cross-validation [2], which is
also widely used in model selection. Both approaches are
time-consuming and can hardly examine a large range of
parameters. A recent advances in kernel parameter selec-
tion is to use gradient-based methods for adaptive learning
the kernel parameters when class labels of the training data
are available [14].

Learning the optimal kernel directly from a set of ker-
nels has attracted much attention during the past few years
[9, 11]. This kind of methods are based on the observation
that in practice no kernel is the best. Thus, seeking the opti-
mal combination of a set of kernels seems more reasonable
than only adjusting the parameters of a single kernel. This
kind of kernel selection methods include kernel alignment
[3], learning the kernel matrix directly with semi-definite
programming [6], hyperkernels [9, 11], and idealized ker-
nels [5], etc. However, most of those methods require that
the class labels of the training examples are available. Since
KPCA works in an unsupervised learning setting where the
class labels of the training examples are not known, those



methods can hardly be applied to KPCA directly. Recently,
Yang et al. [12] proposed a novel kernel selection method
called fisher+kernel criterion for KDA, where the key idea
is to generate the feature matrix from multiple kernels. Yet
this method is still only applicable when the class labels of
training examples are available.

This paper proposes Adaptive Kernel Principal Compo-
nent Analysis (A-KPCA), which can effectively learn the
kernels under the unsupervised learning setting. Inspired by
[12], we first transform the original 1D input vectors into
2D feature matrices through a set of nonlinear mappings
induced from different kernels, each corresponding to one
column of the 2D feature matrix. Then, two coupled sets of
projective vectors are extracted from those feature matrices
using an iterative procedure. One set of projective vectors
corresponds to the column direction of feature matrices and
is used for nonlinear feature exaction, while the other corre-
sponds to the row direction of feature matrices and is used
for searching the optimal combination of kernels. More-
over, an efficient non-iterative algorithm is proposed to ap-
proximate A-KPCA. The effectiveness of the proposed al-
gorithms are validated by extensive experiments.

2 Kernel Principal Component Analysis

Given a training setX = {x1,x2, ...,xn}, where the
training examplesxi ∈ <n. Let ψ : x ∈ X → ψ(x) ∈ F
be a nonlinear mapping from the original input spaceX to
a high-dimensional feature spaceF . The inner product in
F is defined as a kernelK(x,y) = ψ(x)Tψ(y) in the orig-
inal input space. DenoteΨ = (ψ(x1), ψ(x2), ..., ψ(xn)),
andψ̄ = 1/n

∑n
i=1 ψ(xi). Without loss of generality, as-

sume that the data are centered inF , i.e. ψ̄ = 0 , then
the total scatter matrix is defined asSt =

∑n
i=1(ψ(xi) −

ψ̄)(ψ(xi)− ψ̄)T = ΨΨT.
KPCA uses the criterion shown in Eq. 1 to compute the

optimal projective vectorv.

J(v) =
n∑

k=1

‖vTψ(xi)‖2 = vTStv (1)

Maximizing Eq. 1 is equivalent to solving the eigenvalue
problem: To findλ ≥ 0 and eigenvectorsv ∈ F−{0} satis-
fying λv = Stv. It is easy to verify that all solutionsv with
λ 6= 0 lie within the span of{ψ(x1), ψ(x2), ..., ψ(xn)},
i.e. v = Ψq. Thus, we can consider the equivalent problem
shown in Eq. 2.

λq = Kq (2)

HereK = ΨTΨ is then × n kernel matrix. Suppose
q1, q2, ..., qd are the solutions of Eq. 2 corresponding to the
largestd eigenvalues, thenvi = Ψqi is the solution to Eq. 1.
To extract features for a new examplex with KPCA, one

simply projects the imageψ(x) ontovi as shown in Eq. 3.

vT
i ψ(x) = qT

i ΨTψ(x) =
n∑

j=1

qijK(xi,x) (3)

Eqs. 2 and 3 show that the computation of KPCA com-
ponents does not involve the nonlinear mappingψ, and only
the kernel is needed. As mentioned before, the performance
of KPCA is greatly affected by the selection of kernels and
parameters.

3 A-KPCA

Let φi : x ∈ X → φi(x) ∈ Hi, i ∈ {1, 2, ..., f} be a
set of nonlinear mappings from the original input spaceX
to a high-dimensional feature spaceHi. The inner products
in Hi are defined as the kernelsKi(x,y) = φi(x)Tφi(y)
respectively. Fromφi, we defineφ̂i : x ∈ X → φ̂i(x) =
(0T...0T︸ ︷︷ ︸

1...i−1

, φi(x)T,0T...0T︸ ︷︷ ︸
i+1...f

)T ∈ H, i ∈ {1, 2, ..., f}. Here

H is the Hilbert space as the direct sum ofHi and thej-th
0 vector lies inHj . The inner product inH can be de-
fined as: φ̂i(x)Tφ̂j(y) = 0 (i 6= j) and φ̂i(x)Tφ̂i(y) =
φi(x)Tφi(y) = Ki(x,y).

For an original training examplexk , map it into the
high-dimensional feature space with allφ̂i’s and align the
mapped vectors column by column to form a 2D feature
matrix, denoted byΦk = (φ̂1(xk), φ̂2(xk), ..., φ̂f (xk)).
Thus, the original vector-based representation of training
data turns into a matrix-based representation. DenoteΦ̄ =
1
n

∑n
i=1 Φi, and without loss of generality we assume that

Φk ’s have zero means, i.e.̄Φ = 0.
For a series of 2D feature matricesΦ1,Φ2, ...,Φn, we

want to seek two matricesU andR, such that the criterion
shown in Eq. 4 is optimized.

J(U ,R) =
n∑

k=1

‖UTΦkR‖2F (4)

Here ‖ · ‖F is the Frobenius norm of matrix,U =
(u1,u2, ...,ud) is the projective vectors corresponding to
the column direction ofΦk and its purpose is for nonlinear
feature extraction, whileR = (r1, r2, ..., rg) is the projec-
tive vectors corresponding to the row direction ofΦk and
its purpose is for kernel selection.

It is easy to verify thatU ⊆ span(φ̂i(xk)), 1 ≤ i ≤
f, 1 ≤ k ≤ n. DenoteΦ = (Φ1,Φ2, ...,Φn), then
U = ΦL. The size of the originalΦ is f × n, which is
generally very large. To reduce the size ofΦ, we replace it
with Φ̃ = (

∑f
i=1 φ̂i(x1),

∑f
i=1 φ̂i(x2), ...,

∑f
i=1 φ̂i(xn))

so thatU = Φ̃L,L ∈ <n×d. Thus, Eq. 4 can be replaced



by the criterion shown in Eq. 5.

J(L,R) =
n∑

k=1

‖LTΦ̃TΦkR‖2F

=
n∑

k=1

‖LTKkR‖2F (5)

Here we constrainL ∈ <n×d,LTL = I and R ∈
<f×g,RTR = I, andKk = Φ̃TΦk is the n × f ker-
nel matrix, whose(i, j)-th element is computed according
to Eq. 6.

Kk(i, j) = (
f∑

l=1

φ̂l(xi))Tφ̂j(xk)

= Kj(xi,xk) (6)

Eq. 6 indicates that the kernel matrices in Eq. 5 can be
directly computed from the kernel function bank{Ki}. To
the best of our knowledge, there is no closed form solution
to Eq. 5. Inspired by [13], the following theorem presents
an iterative procedure to solve this problem.

Theorem 1 Let L andR be the optimal solution to Eq. 5,
then: (1) For a givenR, L consists of thed eigenvectors
of the matrixML =

∑n
k=1 KkRRTKT

k corresponding to
the largestd eigenvalues; (2) For a givenL, R consists of
theg eigenvectors of the matrixMR =

∑n
k=1 KT

k LLTKk

corresponding to the largestg eigenvalues.

Proof. Equation 5 can be rewritten as
n∑

k=1

‖LTKkR‖2F =
n∑

k=1

trace(LTKkRRTKT
k L)

= trace(LT
n∑

k=1

(KkRRTKT
k )L)

= trace(LTMLL) (7)

Here, for a givenR, the maximum of Eq. 5 or Eq. 7
is obtained only ifL consists of thed eigenvectors of
the matrix ML corresponding to the largestd eigenval-
ues. Similarly, for a givenL, the maximum of Eq. 5 or
trace(RTMRR) is obtained only ifR consists of theg
eigenvectors of the matrixMR corresponding to the largest
g eigenvalues. ¤

Theorem 1 provides an iterative procedure for comput-
ing L andR, i.e. the A-KPCA algorithm, as shown inAl-
gorithm 1.

After obtainingL andR by A-KPCA, we can use them
to extract the nonlinear features for an unseen instancex.
First, construct the kernel matrixKtest(i, j) = Kj(xi,x).
Then, projectKtest according toC = LTKtestR. After
that, the nonlinear features are contained inC.

Algorithm 1: A-KPCA
Input: Training setX = {x1,x2, ...,xn}.
Output: MatricesL andR.

1. Construct the kernel matrixKk for eachxk using
Eq. 6.

2. Obtain initialR0 and seti ← 1.

3. For givenRi−1, Compute thed eigenvectorsLi =
(l1, l2, ..., ld) of ML =

∑n
k=1 KkRRTKT

k corre-
sponding to the largestd eigenvalues.

4. For givenLi, Compute theg eigenvectorsRi =
(r1, r2, ..., rg) of MR =

∑n
k=1 KT

k LLTKk cor-
responding to the largestg eigenvalues.

5. Seti ← i + 1, and goto step 3 until convergence.

4 Approximate A-KPCA

In the above section, we have derived an iterative pro-
cedure to compute the matricesL andR. In this section,
we will develop a non-iterative algorithm to approximate
A-KPCA in a more efficient way.

Given training setX = {x1,x2, ...,xn}, suppose that
the kernel matricesKk ’s have been computed using Eq. 6.
Then, instead of optimizing Eq. 5 directly, we adopt the al-
ternative criterion shown in Eq. 8.

J(L,R) =
n∑

k=1

‖LTKk‖2F +
n∑

k=1

‖KkR‖2F (8)

whereL ∈ <n×d,LTL = I and R ∈ <f×g,RTR =
I. Comparing Eq. 8 with Eq. 5, we can find thatL and
R are not tangled together any more, and therefore can be
computed analytically and simultaneously.

Theorem 2 presents a closed form solution to Eq. 8, i.e.
the approximate A-KPCA algorithm, as shown inAlgo-
rithm 2 . The proof of the theorem is similar to that of PCA
[4] and therefore we omit it due to the page limit.

Theorem 2 The problem in Eq. 8 has closed form solution
L and R: (1) L consists of thed eigenvectors of the ma-
trix ML =

∑n
k=1 KkKT

k corresponding to the largestd
eigenvalues; (2)R consists of theg eigenvectors of the ma-
trix MR =

∑n
k=1 KT

k Kk corresponding to the largestg
eigenvalues.

5 Experiments

Experiments are conducted to compare the proposed al-
gorithms, A-KPCA and approximate A-KPCA, with tradi-
tional PCA and KPCA with single kernel on an toy exam-



Algorithm 2: Approximate A-KPCA
Input: Training setX = {x1,x2, ...,xn}.
Output: MatricesL andR.

1. Construct the kernel matrixKk for eachxk using
Eq. 6.

2. Compute thed eigenvectorsL = (l1, l2, ..., ld) of
ML =

∑n
k=1 KkKT

k corresponding to the largest
d eigenvalues.

3. Compute theg eigenvectorsR = (r1, r2, ..., rg) of
MR =

∑n
k=1 KT

k Kk corresponding to the largest
g eigenvalues.

ple (see Figure 1), four UCI datasets [1] (Ionosphere, Bal-
ance, GlassandHeart), and the COIL-20 database for ob-
ject recognition [8]. For each UCI dataset, half of the data
are used for training, and the rest for testing. For COIL-20
database the first 12 images per object are used for training
and the rest for testing.

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

Figure 1. Left: The whole 2D toy dataset, with
2 classes (corresponding to the outer/inner
circles respectively). Right: the training set.

In the experiments we adopted the Gaussian kernel func-
tionKi(x, y) = exp(‖x−y‖2/2σ2

i ) with widthσi = σ0×i,
i = 1, 2, ..., 5, whereσ0 is the standard variation of training
data. We denote KPCA with the above 5 different kernels as
KPCA-1 to KPCA-5, respectively. In A-KPCA and approx-
imate A-KPCA, the value ofg (number of columns inR) is
set to 1. After feature extraction, the well-known nearest
neighbor (1-NN) classifier is used for classification.

Figure 2 compares the classification accuracies of PCA,
KPCA (with different kernels) and A-KPCA under differ-
ent dimensions. It can be seen from Figure 2 that in most
cases, A-KPCA outperforms PCA and KPCA-1 to KPCA-
5 greatly. It is impressive that on almost all data sets the
proposed A-KPCA consistently outperforms PCA and KP-
CAs no matter which dimension is considered. A-KPCA
achieves the best performance on all the data sets when a
relatively large dimension is used.

Figure 2 also indicates that among KPCAs with single
kernel, i.e. KPCA-1 to KPCA-5, none could always achieve

the highest accuracy. For example, when large dimension is
used, KPCA-1 outperforms KPCA-2 to KPCA-5 onIono-
sphere, while on GlassKPCA-1 is with the lowest accu-
racy among KPCA-1 to KPCA-5. Thus, it leaves space for
ensembling KPCA with different kernels for better perfor-
mance.

Table 1 compares the average accuracies under different
dimensions. From Table 1 we can find that A-KPCA out-
performs PCA and all the five KPCAs on the averaged accu-
racies (see the bold). It is interesting to note, from Table 1,
that no single KPCA always achieves the best performance
(see underlined), which verifies our former claim again.

6 Conclusion

This paper proposes an algorithm for adaptive kernel
principal component analysis, which is based on a new cri-
terion enabling nonlinear feature extraction and unsuper-
vised kernel selection be performed simultaneously. An it-
erative algorithm is proposed to optimize the criterion. Be-
sides, a non-iterative approximate algorithm is presented to
improve the efficiency. Experiments validate the superiority
of the proposed algorithms.

In the reported experiments we only use Gaussian kernel
as the base kernel for Eq. 6. We will investigate the per-
formance of the proposed algorithms using different kinds
of base kernels simultaneously in future work. Also, com-
parison with other kernel tuning algorithms will be carried
out in the future. Moreover, it is possible to extend the
proposed unsupervised kernel learning algorithms to other
kernel-based methods, such as kernelk-means clustering.
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