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Abstract. Manifold clustering, which regards clusters as groups of points around

compact manifolds, has been realized as a promising generalization of traditional

clustering. A number of linear or nonlinear manifold clustering approaches have

been developed recently. Although they have attained better performances than

traditional clustering methods in many scenarios, most of these approaches suffer

from two weaknesses. First, when the data are drawn from hybrid modeling, i.e.,

some data manifolds are separated but some are intersected, existing approaches

could not work well although hybrid modeling often appears in real data. Sec-

ond, many approaches require to know the number of clusters and the intrinsic

dimensions of the manifolds in advance, while it is hard for the user to provide

such information in practice. In this paper, we propose a new manifold clustering

approach, mumCluster, to address these issues. Experimental results show that

the performance of the proposed mumCluster approach is encouraging.

1 Introduction

Traditional clustering methods, such as K-means [1], are based on the idea that a cluster

is centered around a single point when measuring similarity. Recently, a large number

of research efforts have shown that the perceptually meaningful structure of the points

possibly resides on a low-dimensional manifold [2, 3]. Therefore, regarding cluster as

a group of points around a compact manifold becomes a reasonable and promising

generalization of traditional clustering, leading to manifold clustering [4].

Roughly speaking, the research on manifold clustering can be classified into two

branches, i.e., linear and nonlinear. Generalized Principal Component Analysis (GPCA)

[5, 6] and K-planes [7–9] assume the samples to be well approximated by a mixture of

affine subspaces (or linear manifolds). However, manifolds in natural data are generally

nonlinear in the original space [2]. Spectral clustering (SC) [10, 11] is a good option

when the samples are lying on separated clusters where each cluster contains points

sampled from a single nonlinear manifold. Alternatively, Cao and Haralick [12] use

the local dimension and mean square error to infer clusters. However, when there are

intersections among clusters, their performance will degenerate. K-manifolds [4] is

primarily motivated to cluster samples generated from intersecting nonlinear manifolds,

which will fail when the clusters are widely separated.
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Fig. 1. Data points drawn from a hybrid modeling.

There are two main difficulties for existing methods. On the one hand, they usually

work well either in separated case or in intersecting case. When the input data points

are drawn from a hybrid modeling (see Figure 1) where some manifolds are separated,

while some others are intersected with each other, the quality of clustering degenerate.

On the other hand, many of existing methods require the user to provide the number of

clusters and their intrinsic dimensions in advance, while such information are difficult

to be given in practice. For example, considering a data set consisting of face images of

different individuals under various lighting conditions, it is difficult for the user to know

whether the underlying manifolds are separated or intersected, as well as the number of

clusters and the intrinsic dimensions ahead. Thus, to enable manifold clustering to deal

with more real tasks, it is important to design manifold clustering approaches which are

able to work well when the samples are drawn from hybrid modeling, and which can

adaptively determine the number of clusters and dimensions.

In this paper, we propose a new manifold clustering method called mumCluster

(MUlti-Manifold Clustering). Our basic idea is based on the observation that if we can

make the constructed undirected graph in spectral clustering more faithful, i.e., data

points belonging to different manifolds will not be connected, then spectral clustering

can be used to identify different manifolds accurately. Thus, our scheme first identi-

fies the separate subsets of the original data, and then determines whether a subset is

composed of a single manifold or intersecting manifolds. For each intersecting subset,

we will exclude the influence of the inaccurate connected relationships among differ-

ent manifolds. Finally, spectral clustering is used to further infer clusters. Moreover, a

strategy is developed to automatically determine the number of manifold clusters and

their corresponding dimensions.

The rest of this paper is organized as follows: Section 2 briefly reviews the related

manifold clustering methods. In Section 3, the mumCluster method is presented, fol-

lowed by a strategy to determine the number of clusters and their dimensions. Compu-

tational complexity analysis of the proposed method is also presented in this section. In

Section 4, we experimentally evaluate the performance of our proposed method using

synthetic and real-world data. Section 5 concludes this paper.

2 Related Work

Cluster analysis [13] seeks to group internally similar objects into the same cluster

while dissimilar objects into different clusters. Traditional clustering methods, such as
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K-means [1], assume the data are centered around some prototypes. They could not

separate clusters that are nonlinearly separable or centered around manifolds.

GPCA [5, 6] and K-planes [7–9] are representative linear manifold clustering meth-

ods. GPCA models the underlying manifolds with a set of homogeneous polynomials,

then the constructed models are used to infer clusters. Alternatively, K-planes addresses

linear manifold clustering by iterating between assigning data to manifolds, and model-

ing a manifold to each cluster. Although successful for mixtures of linear clusters, both

of them fail to deliver good performance in the presence of nonlinear structures (e.g.,

Figure 3 (a) and (b)). Since nonlinear methods can also work well on linear clusters, in

this paper, we focus on the nonlinear manifold clustering.

Spectral clustering [10, 11] is a good option for nonlinear manifold clustering when

samples are generated from separated clusters where each cluster contains data points

from a single manifold [14]. However, when there are intersections in some areas,

spectral clustering could not work well (e.g., Figure 3 (c)). The reason is that the per-

formance of spectral clustering is heavily relied on the constructed undirected graph,

different clusters near a manifold intersection will easily be connected by the undi-

rected graph, thus diffusing information across the wrong manifolds [15]. K-manifolds

[4] groups data lying on intersecting nonlinear manifolds, which begins by estimat-

ing geodesic distances between points, then an expectation maximization (EM) type

strategy is used to iterate between estimating the manifolds using node-weighted MDS

and assigning each point to the specified manifolds. Unfortunately, the estimation of

geodesic distances fails when there are separated clusters, leading to incorrect cluster-

ing (e.g., Figure 3 (d)). The method most related to ours was proposed by Cao and

Haralick [12], which groups neighboring points into a cluster if they have the same

local dimension and the mean square error of representing the new cluster is small.

This method can handle the hybrid modeling to some extent, by using graph methods

to identify different connected components. However, it is primarily based on the local

dimension, thus the method usually treats the intersections as clusters since the local

dimension in the intersections are higher than the other areas (e.g., Figure 3 (e)).

3 MumCluster

Given a set of data points X = {xi ∈ ℜD, i = 1, 2, ⋅ ⋅ ⋅ , N} sampled from k > 1
distinct manifolds {
j ⊆ ℜD, j = 1, 2, ⋅ ⋅ ⋅ , k} with dimension dj = dim(
j),
0 < dj < D. The samples are unorganized, i.e., we do not know which points belong to

which manifold. Moreover, some manifolds are intersected with each other which form

intersecting manifolds. Our objectives are:

1. Identify the number of manifolds k and their intrinsic dimensions {dj , j = 1, 2, ⋅ ⋅ ⋅ , k};

2. Partition the given samples into the manifold(s) they belong to.

Though a considerable amount of work has been done in this field, as we have

reviewed before, they could not work well on the hybrid modeling. Moreover, many

of them need the user to specify k and {dj , j = 1, 2, ⋅ ⋅ ⋅ , k}. In what following, we

propose the mumCluster method to address these issues.

Our main strategy is trying to construct more faithful undirected graph in spec-

tral clustering, i.e., data points belonging to different manifolds will not be connected.
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Therefore, mumCluster designs a “divide and conquer” strategy to realize this purpose.

This scheme first divides the complicated intersecting manifolds from the single man-

ifolds, then each intersecting subset is further divided into intersection areas and non-

intersection areas. More attention is paid to the intersection areas, where many of the

inaccurate connected relationships situated. The details of the method are presented in

Subsection 3.1, followed by a strategy to automatically determine the number of clusters

and their dimensions in Subsection 3.2. Complexity analysis is presented in Subsection

3.3.

3.1 To Deal with Hybrid Modeling

Generally, hybrid modeling can be divided into different connected subsets, with some

subsets containing only single manifold, while the others containing intersecting man-

ifolds. To deal with the two different structures separately, we propose to use spectral

clustering to partition the samples coarsely into different connected subsets. Generally,

there are different versions of spectral clustering. Following von Luxburg’s suggestion

[14], the following unsymmetrical normalized spectral clustering [10] is adopted:

1. Constructing a similarity graph G: Put an edge between node i and j if i is among

L nearest neighbors of j, and vice versa.

2. Determining the weighted matrix W : If node i and j are connected, then put a

weight wij as wij = 1 (simple weight); otherwise, put wij = 0.

3. Spectral decomposition: Compute the first r eigenvectors u1, u2, ⋅ ⋅ ⋅ , ur, corre-

sponding to the r smallest eigenvalues, of the generalized eigenproblem Eu = �Fu,

where F is a diagonal matrix with Fii =
∑

j wij and E = F − W . Let U =

[u1, u2, ⋅ ⋅ ⋅ , ur] ∈ ℜN×r.

4. Clustering by K-means: Group the points yi, i = 1, 2, ⋅ ⋅ ⋅ , N into r clusters using

K-means, where yi is the vector corresponding to the i-th row of U .

In the above procedure, r should be provided. We will discuss on how to decide r
in the next subsection.

After the different connected subsets �c, c = 1, ⋅ ⋅ ⋅ , r have been identified, the

problem is how to determine their structure, i.e., single or intersecting. For this purpose,

our basic idea is to resort to the intrinsic dimension id. It is based on the observation

that if samples come from a single manifold, then the intrinsic dimension of each point

on this manifold should be the same; otherwise, they are different. Details on estimating

id will be presented in the next subsection.

If the connected subset consists of a single manifold, then a manifold cluster has

been revealed. However, for each intersecting subset �is, further procedures are needed

to reveal different manifold clusters. The first should be to identify the intersection areas

�ia and the non-intersection areas �nia. Generally, the points in �ia have higher

dimension than the other parts. Therefore, the points with the highest dimension dmax

should be first grouped into �ia. In practice, the structure in the intersection area is

usually complex. To ensure this area to be identified accurately, the "-neighbors can be

used. That is,

x ∈ �ia, if
∥

∥x− xip
∥

∥

2
< ", (1)

where xip is any point with dimension dmax. Finally, �is is divided into �ia and �nia.
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The points in �ia and �nia may consist of many small clusters (called intersection

clusters and non-intersection clusters, respectively), which should be grouped in order

to tackle them separately. Generally, these clusters are unconnected, thus spectral clus-

tering can still be used here to group them. If the dimensions on some non-intersection

clusters are different, it implies that there may still exist some other intersection clusters

with lower dmax. Therefore, we should go back to identify these areas until there is no

hidden intersection.

The intersection area implies that there are different manifolds passing across each

other which should be revealed. Though, the manifold clusters are nonlinear, each inter-

section cluster can be considered as a mixture of manifolds with linear structure since it

is a local area. Thus, K-planes can be adopted to reveal the different manifolds (named

fine clusters) in each intersection cluster. Specifically, given the number of clusters k∗

and the dimensions d∗1, d
∗

2, ⋅ ⋅ ⋅ , d
∗

k∗ .

1. Initialization: Assign each point to a cluster randomly to give an initial partition

{C∗

1 , C
∗

2 , ⋅ ⋅ ⋅ , C
∗

k∗}. Then, alternating between the following two steps until conver-

gence.

2. Cluster update: Find a center �∗

i and a set of bases �i = ['i
1, '

i
2, ⋅ ⋅ ⋅ , '

i
d∗

i

] for

cluster C∗

i such that the reconstruction error is minimum.

3. Cluster assignment: For each point x∗

m in the considered intersection cluster,

determine the space j such that

(x∗

m − �∗

j )
T (I − �j�

T
j )(x

∗

m − �∗

j )

= min
i=1,⋅⋅⋅,k∗

(x∗

m − �∗

i )
T (I − �i�

T
i )(x

∗

m − �∗

i ),
(2)

where I is an identity matrix. Then, x∗

m is assigned to the j-th cluster C∗

j .

As indicated before, the constructed undirected graph for each intersecting sub-

set may connect different manifolds, making the partition of samples into the manifold

they belong to impractical. To reveal different manifolds, the connections between them

should be cut out, and should be preserved among the same manifold. Since the unfaith-

ful connections mainly come from the different fine clusters, we cut the connections

among them, while connect all the points in the same fine cluster to preserve the man-

ifold structure. Finally, a new undirected graph Gnew is obtained for each intersecting

subset �is. Thus, spectral clustering is used to finally group points in each �is into

different manifold clusters.

3.2 To Determine the Number of Clusters and the Intrinsic Dimensions

Hereinbefore, we have shown our scheme to partition the given samples into the man-

ifold they belong to. However, it is based on the given number of clusters and their in-

trinsic dimensions, and how to adaptively determine these parameters are not resolved.

In the following, we propose to use eigengap, local intrinsic dimension estimator and a

new bottom-up search procedure to address these issues.

First, as demonstrated in [14], the number of connected components r in the adopted

spectral clustering equals the multiplicity r of the eigenvalue zero of the generalized
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eigen-problem. Therefore, r can be determined by using the eigengap heuristic. That is,

if ∣�l − �l−1∣ ≤ 10−6 < ∣�l+1 − �l∣ , then r = l, (3)

where 10−6 is used to replace zero to avoid numeric problem.

The intrinsic dimension id of each point can be estimated by using a local dimension

estimator. It is based on the observation that though the manifold structures are globally

nonlinear, they are locally linear [3]. Moreover, it is known that the first id largest

eigenvalues of the covariance matrix are significantly higher than the others and thus

can be used as an estimation to the intrinsic dimension, when the original data are

sampled from an id-dimensional manifold [16]. In more detail, we can estimate the

intrinsic dimension by:

1. Calculate the local covariance matrix: For each point xi, find its L nearest neigh-

bors x1
i , ⋅ ⋅ ⋅ , x

L
i , then calculate the local covariance matrix

Ci = 1/L
∑L

j=1
(xj

i − �i)(x
j
i − �i)

T , (4)

where �i = 1/L
∑L

j=1
xj
i is the mean vector.

2. Intrinsic dimension estimation: Determine the sorted eigenvalues �i
1 ≥ ⋅ ⋅ ⋅ ≥ �i

D

of Ci.

if �i
j/�

i
1 < 0.05 ≤ �i

j−1/�
i
1, then id = j − 1. (5)

More challenging is to determine k∗ and d∗1, d
∗

2, ⋅ ⋅ ⋅ , d
∗

k∗ in the K-planes algorithm

which is used to reveal fine clusters in each intersection cluster. Our solution is based on

a bottom-up search strategy, which starts from the lowest dimension dmin. Moreover,

we can determine the possible dimensions and the number of clusters, which reduce the

search space. First, let us introduce the following notion.

Definition: Effective Dimension (ED) [17]

Given k subspaces 
 =
∪k

i=1

i in ℜD of dimension di < D, and Ni sample points

Xi = {xj
i , j = 1, ⋅ ⋅ ⋅ , Ni} drawn from each subspace 
i, the effective dimension is

defined to be:

ED(X,
)
�
= 1/N

∑k

i=1
di(D − di) + 1/N

∑k

i=1
Nidi. (6)

Effective dimension ED(X,
) is the “average” numbers needed to assign to per sam-

ple of X . Generally, there could be many manifold structures 
 which can fit X , while

the manifold structure that leads to the minimum ED normally corresponds to an “ef-

ficient” and hence “natural” interpretation of the data, see [17]. Formally, ED is low if

the number of clusters and dimension of each cluster are small. Therefore, to faithfully

fit the underlying manifold structure, we should search for the structure which mini-

mizes ED among all possible structures under certain criterion. To be consist with the

K-planes algorithm, the reconstruction error is a good choice.

To reduce the search space, the following observation is considered: the intersec-

tion clusters are crossed by different manifolds, moving continuously from the non-

intersection clusters. Suppose an intersection cluster is connected withm non-intersection
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mumCluster(X , L, ", �max)

Input:

X: D ×N feature matrix

L: number of nearest neighbors

": threshold for determining the intersection area

�max: maximum error threshold

Process:

1 Construct graph G with weighted matrix W

2 Group using spectral clustering on W with eigengap

3 for each connected subset

4 Compute the intrinsic dimension id for each point

5 if id’s are the same

6 Output this connected subset as a cluster

7 else

8 Construct a new graph Gnew

9 Group using spectral clustering on Gnew

10 endif

11 end

Output:

{C1, C2, ⋅ ⋅ ⋅ , Ck}: the results of clustering

Fig. 2. Pseudo-code of the mumCluster method

clusters, then the dimensions of the non-intersection clusters imply the possible dimen-

sions of the fine clusters, while the number of non-intersection clusters limits the num-

ber of fine clusters.

Our bottom-up strategy can be summarized as follows:

1. For each intersection cluster, determine the number of connected non-intersection

clusters (i.e., m) and the dimension of each non-intersection cluster (i.e., d1, ⋅ ⋅ ⋅ , dm);

2. Suppose there are n different sorted numbers in {d1, ⋅ ⋅ ⋅ , dm}, i.e., d1 < ⋅ ⋅ ⋅ <
dn. Assign the possible number of clusters to the range from n to m. For each specified

number, the dimension for each cluster is given by one number in {d1, ⋅ ⋅ ⋅ , dn} starting

from the lowest to the highest, and at least one cluster has dimension dj , j = 1, ⋅ ⋅ ⋅ , n.

3. For each given number and dimensions of the clusters, compute its ED if the

reconstruction error by K-planes is smaller than a specified maximum error �max. Oth-

erwise, ED is set to be the maximum number Nmax = 100.

4. The best number of clusters and their dimensions are given by the structure with

the minimum ED.

Our proposed mumCluster reveals that there are three intersection clusters for the

points sampled from Figure 1, where each cluster is connected with m = 4 non-

intersection clusters. The possible structure (in the form of (d∗1, d
∗

2, ⋅ ⋅ ⋅ , d
∗

k∗) for k∗

clusters) and their corresponding effective dimension are tabulated in Table 1.

Figure 2 shows the Pseudo-code of mumCluster.
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Table 1. Effective dimension (ED) for each intersection cluster in Figure 1 w.r.t the possible

structure (the best is marked in boldface).

STRUCTURE 2 (2,2) (2,2,2) (2,2,2,2)

INTERSECTION CLUSTER 1 100 2.021 2.031 2.041

INTERSECTION CLUSTER 2 100 2.019 2.029 2.039

INTERSECTION CLUSTER 3 100 2.020 2.030 2.040

3.3 Complexity Analysis

The computational complexity of our proposed mumCluster is dominated by three

parts: intrinsic dimension estimation, connected components search and fine clusters

identification. Intrinsic dimensions of N D-dimensional data points are estimated by

performing local PCA on L nearest neighbors of each point, the complexity is N ×
O(LDmin(L,D)). Spectral clustering is used to search for the r connected compo-

nents, with the total complexity O((D + L + r)N2 + Nr2t), where O((D + L)N2)
stands for the time complexity of constructing similarity graph, O(rN2) stands for the

complexity of computing the first r generalized eigenvectors and O(Nr2t) is the com-

plexity of K-means in r-dimensional space for t iterations. Since r ≪ N , L ≪ N and

K-means converges very quickly, the complexity of connected components search is

limited by O(N2 max(D,N)). The complexity analysis of grouping fine clusters using

K-planes is not straightforward, since we do not know the exact number of points to be

grouped and a bottom-up scheme as shown in Subsection 3.2 is needed to automatically

determine the number of clusters and their dimensions. However, following the same

analysis in [8], the overall worst case time complexity (an upper bound) of this proce-

dure is O(m2) ⋅ O(DN min(D,N)) when there are m non-intersection clusters. Note

that, this result does not reflect its real running time as demonstrated by the experiments

presented in the next section. To sum up, the computational complexity of mumCluster

is limited by O(N2 max(D,N)) in total, which is determined by the number of data

points and the number of features.

4 Experiments

We now evaluate the performance of our mumCluster using synthetic data and real data.

Note that the number of manifold clusters and their dimensions are provided for all the

other manifold clustering methods except for mumCluster. For spectral clustering (SC),

the unsymmetrical normalized spectral clustering [10] is used.

4.1 Hybrid Modeling Data

The hybrid modeling data shown in Figure 1 are drawn from one helix, one swiss-roll,

and one two-dimensional surface in ℜ3. The number of points are 200, 1000, 600, re-

spectively. As we can see from Figure 3, all the other methods do not work well on this

data set. Table 2 reports the clustering accuracy of the different methods. Obviously, our

method performs quite well. GPCA and K-planes do not work well in this nonlinear
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Fig. 3. Grouping results using different manifold clustering methods.

Table 2. Clustering accuracy (%) of the different methods on the hybrid modeling data.

GPCA K-PLANES SC K-MANIFOLDS CAO-HARALICK MUMCLUSTER

38.11 40.06 57.39 40.39 60.17 99.06

case because of their linear nature, while the method of Cao and Haralick treats the in-

tersections as clusters. SC diffuses wrong clustering information across the intersecting

manifolds, while K-manifolds fails to estimate faithful geodesic distances when there

are separated clusters.

4.2 Single Modeling Data

It is interesting to compare our mumCluster with SC on data containing multiple single

manifolds, and compare with K-manifolds on data containing intersecting manifolds,

where SC and K-manifolds can work well, respectively. It is easy to see that when

points are sampled from multiple separated single manifolds, our mumCluster is in

fact as same as SC and therefore the results are not presented here due to the space

limit. In the following, we compare mumCluster with K-manifolds on data containing

intersecting manifolds. The spirals data set1 (see Figure 1 of [4]) where K-manifolds

can work well is used for the comparison. We run mumCluster and K-manifolds over

five random samplings from this evaluated data set, as well as the other methods which

can be used for intersecting manifolds. Table 3 reports the clustering accuracy. The

results demonstrate that mumCluster generally outperforms the other methods.

1 http://www.cs.wustl.edu/ rms2/kmanifolds.htm.
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Table 3. Clustering accuracy (%) over five random samplings from the spirals data set.

DATA SET A B C D E

GPCA 48.8 42.4 43.6 44.8 47.0

K-PLANES 48.2 40.6 49.4 46.4 46.4

CAO-HARALICK 52.0 50.6 47.6 51.0 48.4

K-MANIFOLDS 98.0 96.0 97.6 97.6 96.6

MUMCLUSTER 100.0 99.8 100.0 99.6 99.2
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Fig. 4. Clustering results using different methods on a subset of the Yale Face Database B.

4.3 Illumination Variant Face Clustering

In this experiment, the face images in the Yale Face Database B2 [18] under 64 varying

lighting condition are used. We strictly follow the experimental design of [5] for a fair

comparison, that is, subjects 2, 5, and 8 of this database are used and the original data

are projected onto low-dimensional space (here, LLE [3] method is adopted ) before

manifold clustering. For the purpose of visualization, we use the class information to

label the sample as shown in Figure 4 (a), which will be used as the ground-truth for

comparing the different approaches. Note that the class information of the samples are

not provided to the clustering methods. We apply mumCluster and the other methods

to group the data. As can be seen from Figure 4, our proposed method achieves a better

clustering, which has a clustering accuracy of 86.98%, while the clustering accuracy

of the other methods are 77.08%, 80.21%, 65.10%, 51.04%, 56.25%, respectively. The

total running time of mumCluster on this real-world data is 0.64s, where local intrinsic

dimension estimation costs 0.07s while fine clusters identification costs 0.31s.

4.4 The Influence of Parameters

There are three parameters in mumCluster. In this subsection, we examine their impact

on the performance of mumCluster by fixing two parameters and varying the concerned

2 http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html
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Fig. 5. Influence of parameters on mumCluster.

parameter. The results on the spirals data set A and the Yale Face Database B are plotted

in Figure 5. We have studied on many other data sets, and the results are similar and

thus omitted due to page limit. In general, the optimal values of these parameters depend

on the distribution of the samples, while it is easy to see that mumCluster can achieve

good performance over a broad rang of these parameters. In detail, the performance of

mumCluster is generally insensitive to the setting of L, as long as it is neither too small

nor too large. The reason is that L is the number of nearest neighbors which will not

capture enough structure information and may lead to many disconnected subgraphs

when it is too small, while local property will lose when it is too large. Moreover, as

we can see that the results on the Yale data have more fluctuation than on the synthetic

data, which show the complexity of the real-world data and thus more attention should

be paid to parameter setting. The performance of mumCluster will degenerate when " is

large. The reason is that " controls the enlarged area of the intersection points, and it will

become too large to ensure a locally linear area. MumCluster is relatively insensitive to

the setting of �max , as we can see in Figure 5 (c) and (f).

Overall, Figure 5 shows that setting the parameters of mumCluster is not difficult,

since the performance of mumCluster is robust to a broad range of parameter values.

Moreover, among the three parameters, L has more influence on the performance of

mumCluster, which shows that local intrinsic dimension estimation is a key step in our

scheme. However, more sophisticated intrinsic dimension estimator can be incorporated

into mumCluster to improve the performance, which is our ongoing work.

5 Conclusion

In this paper, we propose a new manifold clustering method, i.e., mumCluster, which

can work well when the samples are drawn from hybrid modeling and can adaptively
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determine the number of clusters and the intrinsic dimensions. Experimental results

show that mumCluster is superior to many state-of-the-art manifold clustering methods.
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