Efficient Online Learning for Dynamic Environments

Lijun Zhang

Dept. of Computer Science and Technology, Nanjing University

2018 International Workshop on Signal Processing, Optimization and Control (SPOC 2018)
Outline

1. Introduction
 - Online Learning
 - Regret

2. Learning in Dynamic Environments
 - Adaptive Regret
 - Dynamic Regret

3. Our Work
 - Efficient Algorithms for Adaptive Regret
 - From Adaptive Regret to Dynamic Regret

4. Conclusion
Outline

1. Introduction
 - Online Learning
 - Regret

2. Learning in Dynamic Environments
 - Adaptive Regret
 - Dynamic Regret

3. Our Work
 - Efficient Algorithms for Adaptive Regret
 - From Adaptive Regret to Dynamic Regret

4. Conclusion
What Happens in an Internet Minute?

And Future Growth is Staggering

http://cs.nju.edu.cn/zlj
Outline

1. Introduction
 - Online Learning
 - Regret

2. Learning in Dynamic Environments
 - Adaptive Regret
 - Dynamic Regret

3. Our Work
 - Efficient Algorithms for Adaptive Regret
 - From Adaptive Regret to Dynamic Regret

4. Conclusion
Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of answers to previous questions and possibly additional information.
Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of answers to previous questions and possibly additional information.

Online Learning

1: for $t = 1, 2, \ldots, T$ do

4: end for
Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of answers to previous questions and possibly additional information.

Online Learning

1: for \(t = 1, 2, \ldots, T \) do
2: Learner picks a decision \(w_t \in \mathcal{W} \)
 Adversary chooses a function \(f_t(\cdot) \)
4: end for

A classifier

\[w_t \in \mathbb{R}^d \]

An example \((x_t, y_t) \in \mathbb{R}^d \times \{\pm 1\} \)

A loss \(f_t(w) = \max(1 - y_t w^T x_t, 0) \)
Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of answers to previous questions and possibly additional information.

Online Learning

1: \textbf{for} $t = 1, 2, \ldots, T$ \textbf{do}
2: Learner picks a decision $w_t \in W$
 Adversary chooses a function $f_t(\cdot)$
3: Learner suffers loss $f_t(w_t)$ and updates w_t
4: \textbf{end for}

A classifier $w_t \in \mathbb{R}^d$

An example $(x_t, y_t) \in \mathbb{R}^d \times \{\pm 1\}$
A loss $f_t(w) = \max(1 - y_t w^T x_t, 0)$
Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of answers to previous questions and possibly additional information.

1: for $t = 1, 2, \ldots, T$ do
2: Learner picks a decision $w_t \in \mathcal{W}$
 Adversary chooses a function $f_t(\cdot)$
3: Learner suffers loss $f_t(w_t)$ and updates w_t
4: end for

Cumulative Loss

$$\text{Cumulative Loss} = \sum_{t=1}^{T} f_t(w_t)$$
Outline

1. Introduction
 - Online Learning
 - Regret

2. Learning in Dynamic Environments
 - Adaptive Regret
 - Dynamic Regret

3. Our Work
 - Efficient Algorithms for Adaptive Regret
 - From Adaptive Regret to Dynamic Regret

4. Conclusion
Cumulative Loss

\[
\text{Cumulative Loss} = \sum_{t=1}^{T} f_t(w_t)
\]
Cumulative Loss

\[\text{Cumulative Loss} = \sum_{t=1}^{T} f_t(w_t) \]

Regret

\[\text{Regret} = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \]
Regret

Cumulative Loss

\[
\text{Cumulative Loss} = \sum_{t=1}^{T} f_t(w_t)
\]

Regret

\[
\text{Regret} = \underbrace{\sum_{t=1}^{T} f_t(w_t)}_{\text{Cumulative Loss of Online Learner}} - \underbrace{\min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w)}_{\text{Minimal Loss of Offline Learner}}
\]
Regret

Cumulative Loss

\[
\text{Cumulative Loss} = \sum_{t=1}^{T} f_t(w_t)
\]

Regret

\[
\text{Regret} = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in W} \sum_{t=1}^{T} f_t(w)
\]

Cumulative Loss of Online Learner - Minimal Loss of Offline Learner

Hannan Consistent

\[
\limsup_{T \to \infty} \frac{1}{T} \left(\sum_{t=1}^{T} f_t(w_t) - \min_{w \in W} \sum_{t=1}^{T} f_t(w) \right) = 0, \text{ with probability } 1
\]
Regret

Cumulative Loss

Cumulative Loss = \sum_{t=1}^{T} f_t(w_t)

Regret

\text{Regret} = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w)

\text{Cumulative Loss of Online Learner} \quad \text{Minimal Loss of Offline Learner}

Hannan Consistent

\sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) = o(T), \text{ with probability 1}

http://cs.nju.edu.cn/zlj
Types of Online Learning

- **Perceptron** [Rosenblatt, 1958]
 - Online Classification

- **Prediction with Expert Advice** [Littlestone and Warmuth, 1994]
 - There are K experts in \mathcal{W}
 - As a meta-algorithm to combine different methods

- **Online Convex Optimization** [Zinkevich, 2003]
 - $f_1(\cdot), \ldots, f_T(\cdot)$ are convex
 - Online Classification, e.g., Online SVM
 - Online Regression, e.g., Online Least Squares
Online Gradient Descent (OGD)

Algorithm

1: for $t = 1, 2, \ldots, T$ do
2: Learner picks a decision $w_t \in \mathcal{W}$
 Adversary chooses a function $f_t(\cdot)$
3: Learner suffers loss $f_t(w_t)$ and
 $$w_{t+1} = \Pi_{\mathcal{W}}(w_t - \eta_t \nabla f_t(w_t))$$
4: end for

The Projection Operator

$$\Pi_{\mathcal{W}}(x) = \arg\min_{w \in \mathcal{W}} ||w - x||_2$$
Theoretical Guarantee

- Convex Functions [Zinkevich, 2003]
 \[f_t(w) \geq f_t(w') + \langle \nabla f_t(w'), w - w' \rangle, \ \forall w, w' \in \mathcal{W} \]

- Online Gradient Descent with \(\eta_t = 1/\sqrt{t} \)
 \[
 \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \leq \frac{D^2}{2} \sqrt{T} + \left(\sqrt{T} - \frac{1}{2} \right) G^2 = O\left(\sqrt{T} \right)
 \]
Theoretical Guarantee

- Convex Functions [Zinkevich, 2003]
 \[f_t(w) \geq f_t(w') + \langle \nabla f_t(w'), w - w' \rangle, \quad \forall w, w' \in \mathcal{W} \]

- Online Gradient Descent with $\eta_t = 1/\sqrt{t}$
 \[
 \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \leq \frac{D^2}{2} \sqrt{T} + \left(\sqrt{T} - \frac{1}{2} \right) G^2 = O\left(\sqrt{T} \right)
 \]

- Strongly Convex Functions [Hazan et al., 2007]
 \[f_t(w) \geq f_t(w') + \langle \nabla f_t(w'), w - w' \rangle + \frac{\lambda}{2} \|w - w'\|^2, \quad \forall w, w' \in \mathcal{W} \]

- Online Gradient Descent with $\eta_t = 1/(\lambda t)$
 \[
 \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \leq \frac{G^2}{2\lambda} (1 + \log T) = O\left(\log T \right)
 \]

- E.g., Online SVM [Shalev-Shwartz et al., 2007]
Exponentially Concave Functions

Definition

A function \(f(\cdot) : \mathcal{W} \mapsto \mathbb{R} \) is \(\alpha \)-exp-concave if \(\exp(-\alpha f(\cdot)) \) is concave over \(\mathcal{W} \).

- For twice differentiable functions
 \[
 \alpha \nabla f(w)[\nabla f(w)]^\top \preceq \nabla^2 f(w), \ \forall w \in \mathcal{W}.
 \]

- Examples
 - Logistic Loss for Classification
 \[
 f(w) = \log \left(1 + \exp(-yx^\top w) \right)
 \]
 - Square Loss for Regression
 \[
 f(w) = (x^\top w - y)^2
 \]
 - Negative Logarithm Loss for Portfolio Management
 \[
 f(w) = -\log(x^\top w)
 \]
Online Newton Step (ONS)

- **Algorithm** [Hazan et al., 2007]

 1: **for** $t = 1, 2, \ldots, T$ **do**

 2:

 $$
 w_{t+1} = \Pi_{\mathcal{W}}^{A_t} \left[w_t - \frac{1}{\beta} A_t^{-1} \nabla f_t(w_t) \right]
 $$

 $$
 = \arg\min_{w \in \mathcal{W}} (w - w'_{t+1}) A_t (w - w'_{t+1})^T
 $$

 where

 $$
 A_t = A_{t-1} + \nabla f_t(w_t)[\nabla f_t(w_t)]^T, w'_{t+1} = w_t - \frac{1}{\beta} A_t^{-1} \nabla f_t(w_t)
 $$

 3: **end for**

- **Regret**

 $$
 \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \leq 5 \left(\frac{1}{\alpha} + GD \right) d \log T = O(d \log T)
 $$
Outline

1. **Introduction**
 - Online Learning
 - Regret

2. **Learning in Dynamic Environments**
 - Adaptive Regret
 - Dynamic Regret

3. **Our Work**
 - Efficient Algorithms for Adaptive Regret
 - From Adaptive Regret to Dynamic Regret

4. **Conclusion**
The Challenge

Regret → Static Regret

\[
\text{Regret} = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in W} \sum_{t=1}^{T} f_t(w)
\]

\[
= \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(w_*)
\]

\(w_* \in \arg\min_{w \in W} \sum_{t=1}^{T} f_t(w)\)

One of the decision is reasonably good during \(T\) rounds
The Challenge

Regret → Static Regret

\[\text{Regret} = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \]

\[= \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(w_*) \]

where \(w_* \in \arg\min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \)

- One of the decision is reasonably good during \(T \) rounds

Dynamic Environments

Different decisions will be good in different periods

- Recommendation: the interests of a user could change
- Stock market: the best stock changes over time
Outline

1. Introduction
 - Online Learning
 - Regret

2. Learning in Dynamic Environments
 - Adaptive Regret
 - Dynamic Regret

3. Our Work
 - Efficient Algorithms for Adaptive Regret
 - From Adaptive Regret to Dynamic Regret

4. Conclusion
Adaptive Regret

- Adaptive Regret
 [Hazan and Seshadhri, 2007, Daniely et al., 2015]

\[
R(T, \tau) = \max_{[s, s+\tau-1] \subseteq [T]} \left(\sum_{t=s}^{s+\tau-1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s}^{s+\tau-1} f_t(w) \right)
\]

- Minimize the static regret over all intervals of length \(\tau \)
Adaptive Regret

- Adaptive Regret
 [Hazan and Seshadhri, 2007, Daniely et al., 2015]

\[
R(T, \tau) = \max_{[s, s+\tau-1] \subseteq [T]} \left(\sum_{t=s}^{s+\tau-1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s}^{s+\tau-1} f_t(w) \right)
\]

- Minimize the static regret over all intervals of length \(\tau \)

\[
f_1(\cdot), f_2(\cdot), \ldots, f_\tau(\cdot), f_{\tau+1}(\cdot), \ldots, f_s(\cdot), f_{s+1}(\cdot), \ldots, f_{s+\tau-1}(\cdot), f_{s+\tau}(\cdot), \ldots
\]
Adaptive Regret

- Adaptive Regret
 [Hazan and Seshadhri, 2007, Daniely et al., 2015]

\[
R(T, \tau) = \max_{[s, s+\tau-1] \subseteq [T]} \left(\sum_{t=s}^{s+\tau-1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s}^{s+\tau-1} f_t(w) \right)
\]

- Minimize the static regret over all intervals of length τ

\[
\sum_{t=1}^{\tau} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{\tau} f_t(w)
\]

http://cs.nju.edu.cn/zlj

Online Learning
Adaptive Regret

[Hazan and Seshadhri, 2007, Daniely et al., 2015]

\[
R(T, \tau) = \max_{[s, s+\tau-1] \subseteq [T]} \left(\sum_{t=s+\tau-1}^{s+\tau-1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s}^{s+\tau-1} f_t(w) \right)
\]

- Minimize the static regret over all intervals of length τ

\[
\sum_{t=1}^{\tau} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{\tau} f_t(w)
\]

\[
 f_1(\cdot), f_2(\cdot), \ldots, f_\tau(\cdot), f_{\tau+1}(\cdot), \ldots, f_s(\cdot), f_{s+1}(\cdot), \ldots, f_{s+\tau-1}(\cdot), f_{s+\tau}(\cdot), \ldots
\]
Adaptive Regret

[Hazan and Seshadhri, 2007, Daniely et al., 2015]

\[
R(T, \tau) = \max_{[s, s+\tau-1]\subseteq[T]} \left(\sum_{t=s}^{s+\tau-1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s}^{s+\tau-1} f_t(w) \right)
\]

- Minimize the static regret over all intervals of length τ

\[
\sum_{t=2}^{\tau+1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=2}^{\tau+1} f_t(w)
\]

\[
f_1(\cdot), f_2(\cdot), \ldots, f_\tau(\cdot), f_{\tau+1}(\cdot), \ldots, f_s(\cdot), f_{s+1}(\cdot), \ldots, f_{s+\tau-1}(\cdot), f_{s+\tau}(\cdot), \ldots
\]

\[
\sum_{t=1}^{\tau} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{\tau} f_t(w)
\]

\[
\sum_{t=s}^{s+\tau-1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s}^{s+\tau-1} f_t(w)
\]
Adaptive Regret

[Hazan and Seshadhri, 2007, Daniely et al., 2015]

\[
R(T, \tau) = \max_{[s, s+\tau-1] \subseteq [T]} \left(\sum_{t=s}^{s+\tau-1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s}^{s+\tau-1} f_t(w) \right)
\]

- Minimize the static regret over all intervals of length \(\tau \)

\[
\sum_{t=1}^{\tau+1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=2}^{\tau+1} f_t(w)
\]

\[
f_1(\cdot), f_2(\cdot), \ldots, f_\tau(\cdot), f_{\tau+1}(\cdot), \ldots, f_s(\cdot), f_{s+1}(\cdot), \ldots, f_{s+\tau-1}(\cdot), f_{s+\tau}(\cdot), \ldots
\]

\[
\sum_{t=1}^{s+\tau} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s+1}^{s+\tau} f_t(w)
\]
Adaptive Algorithms

- Following the Leading History

1: for $t = 1, 2, \ldots, T$ do
2: Submit $w_t \in \mathcal{W}$ and observes $f_t(\cdot)$

7: end for
Adaptive Algorithms

Following the Leading History

1: **for** $t = 1, 2, \ldots, T$ **do**
2:
3: Submit $w_t \in \mathcal{W}$ and observes $f_t(\cdot)$
4: Initialize an expert E^t by running OGD(f_t, \ldots)
5: Add E^t to the set of experts $S_{t+1} = S_t \cup \{ E^t \}$

7: **end for**

Experts

$$E^1 = \text{OGD}(f_1, f_2, f_3, \ldots, f_t, \ldots)$$

$$E^2 = \text{OGD}(f_2, f_3, \ldots, f_t, \ldots)$$

$$E^3 = \text{OGD}(f_3, \ldots, f_t, \ldots)$$

$$\vdots$$

$$E^t = \text{OGD}(f_t, \ldots)$$
Adaptive Algorithms

- Following the Leading History

1: \textbf{for} $t = 1, 2, \ldots, T$ \textbf{do}
2: \quad Submit $w_t \in V$ and observes $f_t(\cdot)$
3: \quad Initialize an expert E^t by running OGD(f_t, \ldots)
4: \quad Add E^t to the set of experts $S_{t+1} = S_t \cup \{E^t\}$
5: \quad Get the prediction w_{t+1}^i for each expert $E^i \in S_{t+1}$

7: \textbf{end for}

- Online Gradient Descent (OGD)

$$w_{t+1}^i = \prod_{W} \left(w_t^i - \eta_t \nabla f_t(w_t^i) \right), \ \forall E^i \in S_{t+1}$$
Adaptive Algorithms

- Following the Leading History
 1: for $t = 1, 2, \ldots, T$ do
 2: Submit $w_t \in W$ and observes $f_t(\cdot)$
 3: Initialize an expert E^t by running OGD(f_t, \ldots)
 Add E^t to the set of experts $S_{t+1} = S_t \cup \{E^t\}$
 4: Get the prediction w^{i}_{t+1} for each expert $E^i \in S_{t+1}$
 5: Predict w_{t+1} by combining $\{w^{i}_{t+1}|E^i \in S_{t+1}\}$

- end for

- Prediction with Expert Advice
 - Exponential Weighting
 \[
 w_{t+1} = \sum_{E^i \in S_{t+1}} p^{i}_{t+1} w^{i}_{t+1}
 \]
 \[
 p^{i}_{t+1} = p^{i}_{t} e^{-\alpha f_t(w^{i}_{t})}
 \]
Adaptive Algorithms

■ Following the Leading History

1: for $t = 1, 2, \ldots, T$ do
2: Submit $w_t \in {\cal W}$ and observes $f_t(\cdot)$
3: Initialize an expert E^t by running $\text{OGD}(f_t, \ldots$)
 Add E^t to the set of experts $S_{t+1} = S_t \cup \{E^t\}$
4: Get the prediction w_{t+1}^i for each expert $E^i \in S_{t+1}$
5: Predict w_{t+1} by combining $\{w_{t+1}^i | E^i \in S_{t+1}\}$
6: Prune the set of experts S_{t+1}
7: end for

■ Experts

$E^1 = \text{OGD}(f_1, f_2, f_3, \ldots, f_t, \ldots)$
$E^2 = \text{OGD}(f_2, f_3, \ldots, f_t, \ldots)$
$E^3 = \text{OGD}(f_3, \ldots, f_t, \ldots)$
$
E^t = \text{OGD}(f_t, \ldots)$
Theoretical Guarantee

- **Convex Functions** [Jun et al., 2017]
 \[R(T, \tau) = O\left(\sqrt{\tau \log T}\right) \]

- **Strongly Convex Functions** [Zhang et al., 2018]
 \[R(T, \tau) = O\left(\log \tau \log T\right) \]

- **Exponentially Concave Functions** [Hazan and Seshadhri, 2007]
 \[R(T, \tau) = O\left(d \log \tau \log T\right) \]
Introduction

Online Learning

Regret

Learning in Dynamic Environments

Adaptive Regret

Dynamic Regret

Our Work

Efficient Algorithms for Adaptive Regret

From Adaptive Regret to Dynamic Regret

Conclusion
Dynamic Regret

- **Static Regret**

 \[
 \text{Regret} = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in W} \sum_{t=1}^{T} f_t(w) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(w^*)
 \]

 where \(w^* \in \arg\min_{w \in W} \sum_{t=1}^{T} f_t(w) \)

- **General Dynamic Regret**

 \[
 R(u_1, \ldots, u_T) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(u_t)
 \]

 where \(u_1, \ldots, u_T \in W \)
Dynamic Regret

- **Static Regret**

\[
\text{Regret} = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(w_*)
\]

where \(w_* \in \arg\min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \)

- **General Dynamic Regret**

\[
R(u_1, \ldots, u_T) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(u_t)
\]

where \(u_1, \ldots, u_T \in \mathcal{W} \)

- **Worst-case Dynamic Regret**

\[
R(w_1^*, \ldots, w_T^*) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(w_t^*)
\]

where \(w_t^* \in \arg\min_{w \in \mathcal{W}} f_t(w) \)
Worst-case Dynamic Regret

- The Challenge

Sublinear Dynamic Regret is **Impossible** in General!
Worst-case Dynamic Regret

The Challenge

Sublinear Dynamic Regret is Impossible in General!

Assumptions

- Functional Variation [Besbes et al., 2015]
 \[V_T := \sum_{t=2}^{T} \| f_t(\cdot) - f_{t-1}(\cdot) \|_\infty = \sum_{t=2}^{T} \max_{w \in \mathcal{W}} | f_t(w) - f_{t-1}(w) | \]

- Path-length [Mokhtari et al., 2016]
 \[P_T^* := \sum_{t=2}^{T} \| w_t^* - w_{t-1}^* \| \]

- Squared Path-length [Zhang et al., 2017]
 \[S_T^* := \sum_{t=2}^{T} \| w_t^* - w_{t-1}^* \|^2 \]
A Representative Result

- **Functional Variation** [Besbes et al., 2015]
 - Restarted online gradient descent
 \[
 R(w_1^*, \ldots, w_T^*) \leq \begin{cases}
 O\left(\frac{T^{2/3} V_T^{1/3}}{V_T}\right), & \text{Convex Functions} \\
 O\left(\log T \sqrt{TV_T}\right), & \text{Strongly Convex Functions}
 \end{cases}
 \]

- **Advantage**
 - Dynamic regret is sublinear if V_T is sublinear

- **Limitations**
 - The algorithm needs to known an upper bound of V_T
 - It cannot be used in practice
Our Recent Work I

- **Regret**

http://cs.nju.edu.cn/zlj

Online Learning
Our Recent Work II

Adaptive Regret

Dynamic Regret

Our Recent Work II

Adaptive Regret

Dynamic Regret

Outline

1. Introduction
 - Online Learning
 - Regret

2. Learning in Dynamic Environments
 - Adaptive Regret
 - Dynamic Regret

3. Our Work
 - Efficient Algorithms for Adaptive Regret
 - From Adaptive Regret to Dynamic Regret

4. Conclusion
Adaptive Algorithms

- **Following the Leading History**

 1. for $t = 1, 2, \ldots, T$ do
 2. Submit $w_t \in \mathcal{W}$ and observes $f_t(\cdot)$
 3. Initialize an expert E^t by running OGD(f_t, \ldots)
 Add E^t to the set of experts $S_{t+1} = S_t \cup \{E^t\}$
 4. Get the prediction w^i_{t+1} for each expert $E^i \in S_{t+1}$
 5. Predict w_{t+1} by combining $\{w^i_{t+1} | E^i \in S_{t+1}\}$
 6. Prune the set of experts S_{t+1}
 7. end for

- **Online Gradient Descent (OGD)**

 $$w^i_{t+1} = \Pi_{\mathcal{W}} \left(w^i_t - \eta_t \nabla f_t(w^i_t) \right), \forall E^i \in S_{t+1}$$
Adaptive Algorithms

- Following the Leading History

1: \textbf{for} $t = 1, 2, \ldots, T$ \textbf{do}
2: \quad Submit $w_t \in \mathcal{W}$ and observes $f_t(\cdot)$
3: \quad Initialize an expert E^t by running OGD(f_t, \ldots)
 \quad Add E^t to the set of experts $S_{t+1} = S_t \cup \{E^t\}$
4: \quad Get the prediction w^i_{t+1} for each expert $E^i \in S_{t+1}$
5: \quad Predict w_{t+1} by combining $\{w^i_{t+1}|E^i \in S_{t+1}\}$
6: \quad Prune the set of experts S_{t+1}
7: \textbf{end for}

- Online Gradient Descent (OGD)

$$w^i_{t+1} = \prod_{\mathcal{W}} \left(w^i_t - \eta_t \nabla f_t(w^i_t) \right) \quad \forall E^i \in S_{t+1}$$

- Computational Cost per Iteration

$$|S_{t+1}| \text{ gradient evaluations of } f_t(\cdot)$$

where $|S_{t+1}| = O(\log t)$
Gradient Evaluations

- Nuclear-norm Regularized Losses
 \[f_t(W) = \ell_t(W) + \lambda \|W\|_* \]
 where \(W \in \mathbb{R}^{m \times n} \)
 - Low-rank matrix regression
 - Low-rank matrix approximation
 - Low-rank multiclass classification

 Gradient evaluations are expensive when \(m \) and \(n \) are large

- Mini-batch Losses
 \[f_t(w) = \frac{1}{k} \sum_{i=1}^{k} \ell(w^\top x_t^i, y_t^i) \]

 Gradient evaluations are expensive when \(k \) is large

http://cs.nju.edu.cn/zlj
Online Learning with Surrogate Loss

- Following the Leading History [Wang et al., 2018]

1. **for** $t = 1, 2, \ldots, T$ **do**
2. Submit $w_t \in \mathcal{W}$ and observes $f_t(\cdot)$
3. Construct a surrogate loss $\ell_t(\cdot)$ from $\nabla f_t(w_t)$
4. Initialize an expert E^t by running OGD(ℓ_t, \ldots)
 Add E^t to the set of experts $S_{t+1} = S_t \cup \{E^t\}$
5. Get the prediction w_{t+1}^i for each expert $E^i \in S_{t+1}$
6. Predict w_{t+1} by combining $\{w_{t+1}^i | E^i \in S_{t+1}\}$
7. Prune the set of experts S_{t+1}
8. **end for**
Online Learning with Surrogate Loss

- Following the Leading History [Wang et al., 2018]

\begin{algorithm}
\begin{algorithmic}[1]
\State \textbf{for} $t = 1, 2, \ldots, T$ \textbf{do}
\State Submit $w_t \in \mathcal{W}$ and observes $f_t(\cdot)$
\State Construct a surrogate loss $\ell_t(\cdot)$ from $\nabla f_t(w_t)$
\State Initialize an expert E^t by running $\text{OGD}(\ell_t, \ldots)$
\State Add E^t to the set of experts $S_{t+1} = S_t \cup \{E^t\}$
\State Get the prediction w_{t+1}^i for each expert $E^i \in S_{t+1}$
\State Predict w_{t+1} by combining $\{w_{t+1}^i | E^i \in S_{t+1}\}$
\State Prune the set of experts S_{t+1}
\State \textbf{end for}
\end{algorithmic}
\end{algorithm}

- Experts

\[
E^1 = \text{OGD}(\ell_1, \ell_2, \ell_3, \ldots, \ell_t, \ldots) \\
E^2 = \text{OGD}(\ell_2, \ell_3, \ldots, \ell_t, \ldots) \\
\vdots \\
E^t = \text{OGD}(\ell_t, \ldots)
\]
Online Learning with Surrogate Loss

- Following the Leading History [Wang et al., 2018]
 1: for $t = 1, 2, \ldots, T$ do
 2: Submit $w_t \in \mathcal{W}$ and observes $f_t(\cdot)$
 3: Construct a surrogate loss $\ell_t(\cdot)$ from $\nabla f_t(w_t)$
 4: Initialize an expert E^t by running OGD(ℓ_t, \ldots)
 Add E^t to the set of experts $S_{t+1} = S_t \cup \{E^t\}$
 5: Get the prediction w^i_{t+1} for each expert $E^i \in S_{t+1}$
 6: Predict w_{t+1} by combining $\{w^i_{t+1}|E^i \in S_{t+1}\}$
 7: Prune the set of experts S_{t+1}
 8: end for

- Online Gradient Descent (OGD)

$$w^i_{t+1} = \Pi_{\mathcal{W}} \left(w^i_t - \eta_t \nabla \ell_t(w^i_t) \right), \quad \forall E^i \in S_{t+1}$$
Online Learning with Surrogate Loss

Following the Leading History [Wang et al., 2018]

1: for \(t = 1, 2, \ldots, T \) do
2: \(w_t \in \mathcal{W} \) and observes \(f_t(\cdot) \)
3: Construct a surrogate loss \(\ell_t(\cdot) \) from \(\nabla f_t(w_t) \)
4: Initialize an expert \(E^t \) by running OGD\((\ell_t, \ldots)\)
 Add \(E^t \) to the set of experts \(S_{t+1} = S_t \cup \{E^t\} \)
5: Get the prediction \(w^i_{t+1} \) for each expert \(E^i \in S_{t+1} \)
6: Predict \(w_{t+1} \) by combining \(\{w^i_{t+1}|E^i \in S_{t+1}\} \)
7: Prune the set of experts \(S_{t+1} \)
8: end for

Online Gradient Descent (OGD)

\[w^i_{t+1} = \Pi_{\mathcal{W}} \left(w^i_t - \eta_t \nabla \ell_t(w^i_t) \right), \quad \forall E^i \in S_{t+1} \]

Computational Cost per Iteration

1 gradient evaluation of \(f_t(\cdot) \)
First-order Condition

\[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle \]
Convex Functions

- First-order Condition
 \[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle \]

- Surrogate Loss
 \[\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle \]

which is convex
Convex Functions

- **First-order Condition**
 \[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle \]

- **Surrogate Loss**
 \[\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle \]
 which is convex

- **Properties**
 - Gradient evaluation is easy
 \[\nabla \ell_t(w_t^i) = \nabla f_t(w_t) \]
 - The regret bound is maintained
 \[f_t(w_t) - f_t(w) \leq \ell_t(w_t) - \ell_t(w) \]
Convex Functions

- **First-order Condition**
 \[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle \]

- **Surrogate Loss**
 \[\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle \]

 which is convex

- **Properties**
 - Gradient evaluation is easy
 \[\nabla \ell_t(w_t^i) = \nabla f_t(w_t) \]
 - The regret bound is maintained
 \[f_t(w_t) - f_t(w) \leq \ell_t(w_t) - \ell_t(w) \]

- **Adaptive Regret**
 \[R(T, \tau) = O\left(\sqrt{\tau \log T}\right) \]
Strongly Convex Functions

- First-order Condition

\[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle - \frac{\lambda}{2} \| w - w_t \|^2 \]
Strongly Convex Functions

- **First-order Condition**

\[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle - \frac{\lambda}{2} \| w - w_t \|^2 \]

- **Surrogate Loss**

\[\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle + \frac{\lambda}{2} \| w - w_t \|^2 \]

which is strongly convex
Strongly Convex Functions

- First-order Condition
 \[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle - \frac{\lambda}{2} \| w - w_t \|^2 \]

- Surrogate Loss
 \[\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle + \frac{\lambda}{2} \| w - w_t \|^2 \]
 which is strongly convex

- Properties
 - Gradient evaluation is easy
 \[\nabla \ell_t(w_t^i) = \nabla f_t(w_t) + \lambda (w_t^i - w_t) \]
 - The regret bound is maintained
 \[f_t(w_t) - f_t(w) \leq \ell_t(w_t) - \ell_t(w) \]
First-order Condition

\[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle - \frac{\lambda}{2} \|w - w_t\|^2 \]

Surrogate Loss

\[\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle + \frac{\lambda}{2} \|w - w_t\|^2 \]

which is strongly convex

Properties

- Gradient evaluation is easy
 \[\nabla \ell_t(w^i_t) = \nabla f_t(w_t) + \lambda(w^i_t - w_t) \]

- The regret bound is maintained
 \[f_t(w_t) - f_t(w) \leq \ell_t(w_t) - \ell_t(w) \]

Adaptive Regret

\[R(T, \tau) = O(\log \tau \log T) \]
Exponentially Concave Functions

- First-order Condition [Hazan et al., 2007]

\[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle - \frac{\beta}{2} (\langle \nabla f_t(w_t), w - w_t \rangle)^2 \]
Exponentially Concave Functions

- First-order Condition [Hazan et al., 2007]
 \[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle - \frac{\beta}{2} (\langle \nabla f_t(w_t), w - w_t \rangle)^2 \]

- Surrogate Loss
 \[\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle + \frac{\beta}{2} (\langle \nabla f_t(w_t), w - w_t \rangle)^2 \]
 which is exponentially concave
First-order Condition [Hazan et al., 2007]

\[f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle - \frac{\beta}{2} \left(\langle \nabla f_t(w_t), w - w_t \rangle \right)^2 \]

Surrogate Loss

\[\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle + \frac{\beta}{2} \left(\langle \nabla f_t(w_t), w - w_t \rangle \right)^2 \]

which is exponentially concave

Properties

- Gradient evaluation is easy

\[\nabla \ell_t(w_t^i) = \nabla f_t(w_t) + \beta \langle \nabla f_t(w_t), w_t^i - w_t \rangle \nabla f_t(w_t) \]

- The regret bound is maintained

\[f_t(w_t) - f_t(w) \leq \ell_t(w_t) - \ell_t(w) \]
Exponentially Concave Functions

- First-order Condition [Hazan et al., 2007]

 $$f_t(w_t) - f_t(w) \leq -\langle \nabla f_t(w_t), w - w_t \rangle - \frac{\beta}{2} (\langle \nabla f_t(w_t), w - w_t \rangle)^2$$

- Surrogate Loss

 $$\ell_t(w) = \langle \nabla f_t(w_t), w - w_t \rangle + \frac{\beta}{2} (\langle \nabla f_t(w_t), w - w_t \rangle)^2$$

 which is exponentially concave

- Properties

 - Gradient evaluation is easy

 $$\nabla \ell_t(w_t) = \nabla f_t(w_t) + \beta \langle \nabla f_t(w_t), w_t - w_t \rangle \nabla f_t(w_t)$$

 - The regret bound is maintained

 $$f_t(w_t) - f_t(w) \leq \ell_t(w_t) - \ell_t(w)$$

- Adaptive Regret

 $$R(T, \tau) = O(d \log \tau \log T)$$
Nuclear-norm Regularized Matrix Regression

\[f_t(W) = \frac{1}{2} \left(y_t - \text{trace}(W^\top X_t) \right)^2 + b\|W\|_* \]

\[y_t = \text{trace}(W_*^\top X_t) + \epsilon_t, \text{ where } W_* \text{ changes twice} \]
Nuclear-norm Regularized Matrix Regression

\[f_t(W) = \frac{1}{2} \left(y_t - \text{trace}(W^\top X_t) \right)^2 + b\|W\|_* \]

\[y_t = \text{trace}(W_*^\top X_t) + \epsilon_t, \text{ where } W_* \text{ changes twice} \]
Experiments

- Mini-batch Logistic Regression

\[f_t(w) = \frac{1}{k} \sum_{i=1}^{k} \log \left(1 + \exp \left(-y_t^i w^\top x_t^i \right) \right) \]

- the IJCNN01 dataset, where labels are flipped twice
Experiments

Mini-batch Logistic Regression

\[
f_t(w) = \frac{1}{k} \sum_{i=1}^{k} \log \left(1 + \exp \left(-y_t^i w^\top x_t^i \right) \right)
\]

- the IJCNN01 dataset, where labels are flipped twice
Adaptive Regret versus Dynamic Regret

■ Adaptive Regret

\[R(T, \tau) = \max_{[s, s+\tau-1] \subseteq [T]} \left(\sum_{t=s}^{s+\tau-1} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=s}^{s+\tau-1} f_t(w) \right) \]

- Well-studied

■ Worst-case Dynamic Regret

\[R(w_1^*, \ldots, w_T^*) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(w_t^*) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} \min_{w \in \mathcal{W}} f_t(w) \]

where \(w_t^* \in \arg\min_{w \in \mathcal{W}} f_t(w) \)

- Partially addressed

[Hall and Willett, 2013, Jadbabaie et al., 2015, Mokhtari et al., 2016, Yang et al., 2016, Zhang et al., 2017]
From Adaptive Regret to Dynamic Regret

Theorem [Zhang et al., 2018]

Let $\mathcal{I}_1 = [s_1, q_1], \mathcal{I}_2 = [s_2, q_2], \ldots, \mathcal{I}_k = [s_k, q_k]$ be a partition of $[1, T]$.

Define the local functional variation of the i-th interval as

$$V_T(i) = \sum_{t=s_i+1}^{q_i} \max_{\mathbf{w} \in \mathcal{W}} |f_t(\mathbf{w}) - f_{t-1}(\mathbf{w})|$$

We have

$$R(\mathbf{w}_1^*, \ldots, \mathbf{w}_T^*) \leq \min_{\mathcal{I}_1, \ldots, \mathcal{I}_k} \sum_{i=1}^{k} (R(T, |\mathcal{I}_i|) + 2|\mathcal{I}_i| \cdot V_T(i))$$
From Adaptive Regret to Dynamic Regret

Theorem [Zhang et al., 2018]

- Let $\mathcal{I}_1 = [s_1, q_1], \mathcal{I}_2 = [s_2, q_2], \ldots, \mathcal{I}_k = [s_k, q_k]$ be a partition of $[1, T]$.
- Define the local functional variation of the i-th interval as

$$V_T(i) = \sum_{t=s_i+1}^{q_i} \max_{w \in \mathcal{W}} |f_t(w) - f_{t-1}(w)|$$

We have

$$R(w_1^*, \ldots, w_T^*) \leq \min_{\mathcal{I}_1, \ldots, \mathcal{I}_k} \sum_{i=1}^{k} \left(R(T, |\mathcal{I}_i|) + 2|\mathcal{I}_i| \cdot V_T(i) \right)$$

Corollary

$$R(w_1^*, \ldots, w_T^*) \leq \min_{1 \leq \tau \leq T} \left(\frac{R(T, \tau) T}{\tau} + 2\tau V_T \right)$$

http://cs.nju.edu.cn/zlj
Convex Functions

\[R(T, \tau) = O \left(\sqrt{\tau \log T} \right) \]

\[\Rightarrow R(w_1^*, \ldots, w_T^*) = O \left(\max \left\{ \sqrt{T \log T}, \frac{T^{2/3} V_T^{1/3} \log^{1/3} T} \right\} \right) \]

Lower bound is \(O(T^{2/3} V_T^{1/3}) \) [Besbes et al., 2015]
Dynamic Regret of Adaptive Algorithms

- Convex Functions
 \[R(T, \tau) = O\left(\sqrt{\tau \log T}\right) \]
 \[\Rightarrow R(w_1^*, \ldots, w_T^*) = O\left(\max \left\{ \sqrt{T \log T}, T^{2/3} V_T^{1/3} \log^{1/3} T \right\} \right) \]
- Lower bound is \(O(T^{2/3} V_T^{1/3}) \) [Besbes et al., 2015]

- Strongly Convex Functions
 \[R(T, \tau) = O\left(\log \tau \log T\right) \]
 \[\Rightarrow R(w_1^*, \ldots, w_T^*) = O\left(\max \left\{ \log T, \sqrt{TV_T} \log T \right\} \right) \]
- Lower bound is \(O(\sqrt{TV_T}) \) [Besbes et al., 2015]
Dynamic Regret of Adaptive Algorithms

- **Convex Functions**
 \[R(T, \tau) = O\left(\sqrt{\tau \log T}\right) \]
 \[\Rightarrow R(w_1^*, \ldots, w_T^*) = O\left(\max\left\{ \sqrt{T \log T}, T^{2/3} V_T^{1/3} \log^{1/3} T \right\}\right) \]
 - Lower bound is \(O(T^{2/3} V_T^{1/3}) \) [Besbes et al., 2015]

- **Strongly Convex Functions**
 \[R(T, \tau) = O\left(\log \tau \log T\right) \]
 \[\Rightarrow R(w_1^*, \ldots, w_T^*) = O\left(\max\left\{ \log T, \sqrt{TV_T \log T}\right\}\right) \]
 - Lower bound is \(O(\sqrt{TV_T}) \) [Besbes et al., 2015]

- **Exponentially Concave Functions**
 \[R(T, \tau) = O\left(d \log \tau \log T\right) \]
 \[\Rightarrow R(w_1^*, \ldots, w_T^*) = O\left(d \cdot \max\left\{ \log T, \sqrt{TV_T \log T}\right\}\right) \]
Our Contributions

1. Adaptive algorithms can be directly leveraged to minimize the dynamic regret.

2. The dynamic regrets are established without prior knowledge of the functional variation.
 - The results of [Besbes et al., 2015] needs to known an upper bound of V_T.

3. This is the first time that exponential concavity is utilized in dynamic regret.
Outline

1 Introduction
 • Online Learning
 • Regret

2 Learning in Dynamic Environments
 • Adaptive Regret
 • Dynamic Regret

3 Our Work
 • Efficient Algorithms for Adaptive Regret
 • From Adaptive Regret to Dynamic Regret

4 Conclusion
Conclusion

- A brief introduction to adaptive regret and dynamic regret
- Efficient algorithms for adaptive regret
- From adaptive regret to dynamic regret

Future Work

- Adaptive regret that does not depend on T
- General dynamic regret

$$R(u_1, \ldots, u_T) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(u_t)$$

for any sequence $u_1, \ldots, u_T \in \mathcal{W}$

- Without convexity
Introduction Dynamic Environments Our Work Conclusion

Reference I

Thanks!

Non-stationary stochastic optimization.

Strongly adaptive online learning.

Dynamical models and tracking regret in online convex programming.

Logarithmic regret algorithms for online convex optimization.

Adaptive algorithms for online decision problems.
Electronic Colloquium on Computational Complexity, 88.

Online optimization: Competing with dynamic comparators.

Improved Strongly Adaptive Online Learning using Coin Betting.
In *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, pages 943–951.
The weighted majority algorithm.

Online optimization in dynamic environments: Improved regret rates for strongly convex problems.

The perceptron: a probabilistic model for information storage and organization in the brain.

Shalev-Shwartz, S. (2011).
Online learning and online convex optimization.

Pegasos: primal estimated sub-gradient solver for SVM.

Minimizing adaptive regret with one gradient per iteration.
In *Proceedings of the 27th International Joint Conference on Artificial Intelligence*.

Tracking slowly moving clairvoyant: Optimal dynamic regret of online learning with true and noisy gradient.
Dynamic regret of strongly adaptive methods.
In *Proceedings of the 35th International Conference on Machine Learning*.

Improved dynamic regret for non-degenerate functions.

Online convex programming and generalized infinitesimal gradient ascent.