Supplementary Material

A Proof of Lemma 1

We first note that $F_t(y)$ is 2-strongly convex for any $t = 0, \ldots, T$, and Hazan and Kale [2012] have proved that for any β-strongly convex function $f(x)$ over \mathcal{K} and any $x \in \mathcal{K}$, it holds that

$$\frac{\beta}{2} \|x - x^*\|_2^2 \leq f(x) - f(x^*)$$

(21)

where $x^* = \arg\min_{x \in \mathcal{K}} f(x)$.

Then, we consider the term $A = \sum_{t=1}^{T} G \|y_{\tau_t} - y_{\tau_{t'}}\|_2$. If $T \leq 2d$, we have

$$A = \sum_{t=1}^{T} G \|y_{\tau_t} - y_{\tau_{t'}}\|_2 \leq TGD \leq 2dGD$$

(22)

where the first inequality is due to Assumption 2. If $T > 2d$, we have

$$A = \sum_{t=1}^{2d} G \|y_{\tau_t} - y_{\tau_{t'}}\|_2 + \sum_{t=2d+1}^{T} G \|y_{\tau_t} - y_{\tau_{t'}}\|_2 \leq 2dGD + \sum_{t=2d+1}^{T} G \|y_{\tau_t} - y_{\tau_{t'}}\|_2 \leq 2dGD + \sum_{t=2d+1}^{T} G \|y_{\tau_t} - y_{\tau_{t'}}\|_2 + \|y_{\tau_t}^* - y_{\tau_{t'}}^*\|_2 + \|y_{\tau_t}^* - y_{\tau_{t'}}^*\|_2).$$

(23)

Because of (21), for any $t \in [T + 1]$, we have

$$\|y_t - y_t^*\|_2 \leq \sqrt{F_{t-1}(y_t) - F_{t-1}(y_t^*)} \leq \sqrt{\gamma(t + 2)^{-\alpha/2}}$$

(24)

where the last inequality is due to $F_{t-1}(y_t) - F_{t-1}(y_t^*) \leq \gamma(t + 2)^{-\alpha}$.

Moreover, for any $i \geq \tau_t$, we have

$$\|y_{\tau_t}^* - y_{\tau_t}^*\|_2 \leq F_{t-1}(y_{\tau_t}^*) - F_{t-1}(y_t^*) = \eta \sum_{k=\tau_t}^{i-1} g_{\tau_k} \|y_{\tau_t}^* - y_{\tau_t}^*\|_2$$

(25)

$$\leq \eta G(i - \tau_t) \|y_{\tau_t}^* - y_{\tau_t}^*\|_2 \leq \eta G(i - \tau_t) \|y_{\tau_t}^* - y_{\tau_t}^*\|_2$$

where the first inequality is still due to (21) and the last inequality is due to Assumption 1.

Because of $t' = t + d_t - 1 \geq t$, we have $\tau_{t'} \geq \tau_t$. Then, from (25), we have

$$\|y_{\tau_t}^* - y_{\tau_{t'}}^*\|_2 \leq \eta G(\tau_{t'} - \tau_t) = \eta G \sum_{k=t}^{\tau_{t'}-1} |F_k|.$$

(26)

Then, by substituting (24) and (26) into (23), if $T > 2d$, we have

$$A \leq 2dGD + \sum_{t=2d+1}^{T} G \left(\sqrt{\gamma(\tau_t + 2)^{-\alpha/2}} + \eta G \sum_{k=t}^{\tau_{t'}-1} |F_k| \right)$$

$$\leq 2dGD + \sum_{t=2d+1}^{T} 2G \sqrt{\gamma(\tau_t + 2)^{-\alpha/2}} + \eta G^2 \sum_{t=2d+1}^{T} \sum_{k=t}^{\tau_{t'}-1} |F_k|$$

(27)

where the second inequality is due to $(\tau_t + 2)^{-\alpha/2} \geq (\tau_{t'} + 2)^{-\alpha/2}$ for $\tau_t \leq \tau_{t'}$ and $\alpha > 0$.

To bound the second term in the right side of (27), we introduce the following lemma.
Lemma 7 Let \(\tau_t = 1 + \sum_{i=1}^{t-1} |F_i| \) for any \(t \in [T + d] \). If \(T > 2d \), for \(0 < \alpha \leq 1 \), we have

\[
\sum_{t=2d+1}^{T} (\tau_t - 1)^{-\alpha/2} \leq d + \frac{2}{2-\alpha} T^{1-\alpha/2}.
\]

(28)

For the third term in the right side of (27), if \(T > 2d \), we have

\[
\sum_{t=2d+1}^{T} \sum_{k=t}^{T} |F_k| \leq \sum_{t=2d+1}^{T} \sum_{k=t}^{T} |F_k| = \sum_{t=2d+1}^{T} \sum_{k=t}^{T} |F_k|
\]

(29)

where the second inequality is due to \(t' - 1 < t' = t + d - 1 \leq t + d - 1 \).

By substituting (28) and (29) into (27) and combining with (22), we have

\[
A \leq 2dGD + 2Gd\sqrt{\gamma} + \frac{4G\sqrt{\gamma}T^{1-\alpha/2}}{2-\alpha} + \eta G^2 dT.
\]

(30)

Then, for the term \(C = \sum_{t=s}^{T+d-1} \sum_{i=1}^{T+\tau_{t+1}-1} G\|y_{\tau_t} - y_i\|_2 \), we have

\[
C = \sum_{t=s}^{T+d-1} \sum_{i=1}^{\tau_{t+1}-1} G\|y_{\tau_t} - y_i\|_2 + \sum_{t=s+1}^{T+d-1} \sum_{i=1}^{\tau_{t+1}-1} G\|y_{\tau_t} - y_i\|_2
\]

\[
\leq |F_s|GD + \sum_{t=s+1}^{T+d-1} \sum_{i=1}^{\tau_{t+1}-1} G\|y_{\tau_t} - y_i\|_2 + \sum_{t=s+1}^{T+d-1} \sum_{i=1}^{\tau_{t+1}-1} G\|y_{\tau_t} - y_i\|_2
\]

\[
\leq |F_s|GD + \sum_{t=s+1}^{T+d-1} \sum_{i=1}^{\tau_{t+1}-1} 2G\sqrt{\gamma}(\tau_t + 2)^{-\alpha/2} + \eta G^2 \sum_{t=s+1}^{T+d-1} \sum_{k=0}^{\tau_{t+1}-1} k
\]

(31)

where the first inequality is due to Assumption 2, the second inequality is due to (24) and (25), and the third inequality is due to \((\tau_t + 2)^{-\alpha/2} \geq (i + 2)^{-\alpha/2} \) for \(\tau_t \leq i \) and \(\alpha > 0 \).

Moreover, for any \(t \in [T + d - 1] \) and \(k \in F_t \), since \(1 \leq d_k \leq d \), we have

\[
t + d - 1 \leq k = t - d_k + 1 \leq t
\]

which implies that

\[
|F_t| \leq t - (t - d + 1) + 1 = d.
\]

(32)

Then, it is easy to verify that

\[
\tau_{t+1} - \tau_t - 1 < \tau_{t+1} - \tau_t = |F_t| \leq d.
\]

Therefore, by combining with (31), we have

\[
C \leq dGD + \sum_{t=s+1}^{T+d-1} \sum_{i=1}^{\tau_{t+1}-1} 2G\sqrt{\gamma}(\tau_t - 1)^{-\alpha/2} + \eta G^2 \sum_{t=s}^{T+d-1} \frac{|F_t|^2}{2}
\]

\[
\leq dGD + \sum_{t=s+1}^{T+d-1} \sum_{i=1}^{\tau_{t+1}-1} 2G\sqrt{\gamma}(\tau_t - 1)^{-\alpha/2} + \eta G^2 \sum_{t=s}^{T+d-1} \frac{d|F_t|}{2}
\]

(33)

Furthermore, we introduce the following lemma.
Lemma 8 Let $\tau_t = 1 + \sum_{i=1}^{t-1} |F_i|$ for any $t \in [T + d]$ and $s = \min \{t | t \in [T + d - 1], |F_t| > 0 \}$. For $0 < \alpha \leq 1$, we have

$$
\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_t}^{\tau_{t+1}-1} (\tau_t - 1)^{-\alpha/2} \leq d + \frac{2}{2-\alpha} T^{1-\alpha/2}. \tag{34}
$$

By substituting (34) into (33), we have

$$
C \leq dGD + 2G\sqrt{7}d + \frac{AG\sqrt{7}}{2-\alpha} T^{1-\alpha/2} + \frac{\eta G^2d}{2} \tag{35}
$$

We complete the proof by combing (30) and (35).

B Proof of Lemma 2

At the beginning of this proof, we recall the standard definition for smooth functions [Boyd and Vandenberghe, 2004].

Definition 2 A function $f(x) : \mathcal{K} \to \mathbb{R}$ is called α-smooth over \mathcal{K} if for all $x, y \in \mathcal{K}$, it holds that $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|^2$.

It is not hard to verify that $F_t(y)$ is 2-smooth over \mathcal{K} for any $t \in [T]$. This property will be utilized in the following.

For brevity, we define $h_t = F_{t-1}(y_t) - F_{t-1}(y^*_t)$ for $t = 1, \ldots, T+1$ and $h_t(y_{t-1}) = F_{t-1}(y_{t-1}) - F_{t-1}(y^*_t)$ for $t = 2, \ldots, T+1$. For $t = 1$, since $y_1 = \text{argmin}_{y \in \mathcal{K}} \|y - y_1\|^2_2$, we have

$$
h_1 = F_0(y_1) - F_0(y^*_1) = 0 \leq \frac{8D^2}{\sqrt{3}} = \frac{8D^2}{\sqrt{T+2}}. \tag{36}
$$

Then, for any $T + 1 \geq t \geq 2$, we have

$$
h_t(y_{t-1}) = F_{t-1}(y_{t-1}) - F_{t-1}(y^*_t) \\
= F_{t-2}(y_{t-1}) - F_{t-2}(y^*_t) + \langle \eta g_{c_{t-1}}, y_{t-1} - y^*_t \rangle \\
\leq F_{t-2}(y_{t-1}) - F_{t-2}(y^*_t) + \langle \eta g_{c_{t-1}}, y_{t-1} - y^*_t \rangle \\
\leq h_{t-1} + \eta \|g_{c_{t-1}}\|_2 \|y_{t-1} - y^*_t\|_2 + \frac{\eta G\sqrt{7}}{2-\alpha} T^{1-\alpha/2} \tag{37}
$$

where the first inequality is due to $y^*_t = \text{argmin}_{y \in \mathcal{K}} F_{t-2}(y)$ and the last inequality is due to Assumption 1.

Moreover, for any $T + 1 \geq t \geq 2$, we note that $F_{t-2}(x)$ is also 2-strongly convex, which implies that

$$
\|y_{t-1} - y^*_t\|_2 \leq \sqrt{F_{t-2}(y_{t-1}) - F_{t-2}(y^*_t)} \leq \sqrt{h_{t-1}} \tag{38}
$$

where the first inequality is due to (21).

Similarly, for any $T + 1 \geq t \geq 2$

$$
\|y^*_t - y^*_t\|_2^2 \leq F_{t-1}(y^*_t) - F_{t-1}(y^*_t) \\
= F_{t-2}(y^*_t) - F_{t-2}(y^*_t) + \langle \eta g_{c_{t-1}}, y^*_t - y^*_t \rangle \\
\leq \eta \|g_{c_{t-1}}\|_2 \|y^*_t - y^*_t\|_2 \tag{39}
$$

which implies that

$$
\|y^*_t - y^*_t\|_2 \leq \eta \|g_{c_{t-1}}\|_2 \leq \eta G. \tag{39}
$$

By combining (37), (38), and (39), for any $T + 1 \geq t \geq 2$, we have

$$
h_t(y_{t-1}) \leq h_{t-1} + \eta G\sqrt{h_{t-1}} + \eta^2G^2. \tag{40}
$$
Then, for any $T + 1 \geq t \geq 2$, since $F_{t-1}(y)$ is 2-smooth, we have
\begin{align*}
h_t &= F_{t-1}(y_t) - F_{t-1}(y_t^*) \\
&= F_{t-1}(y_{t-1}^*) + \sigma_{t-1}(v_{t-1} - y_{t-1}) - F_{t-1}(y_t^*) \\
&\leq h_t(y_{t-1}) + \langle \nabla F_{t-1}(y_{t-1}), \sigma_{t-1}(v_{t-1} - y_{t-1}) \rangle + \sigma_{t-1}^2\|v_{t-1} - y_{t-1}\|^2.
\end{align*}
(41)

Moreover, for any $t \in [T]$, according to Algorithm 1, we have
\begin{equation}
\sigma_t = \arg\min_{\sigma \in [0,1]} \langle \sigma (v_t - y_t), \nabla F_t(y_t) \rangle + \sigma^2\|v_t - y_t\|^2.
\end{equation}
(42)

Therefore, for $t = 2$, by combining (40) and (41), we have
\begin{align*}
h_2 &\leq h_1 + \eta G \sqrt{h_1} + \eta^2 G^2 + \langle \nabla F_1(y_1), \sigma_1(v_1 - y_1) \rangle + \sigma_1^2\|v_1 - y_1\|^2 \\
&\leq h_1 + \eta G \sqrt{h_1} + \eta^2 G^2 = \frac{D^2}{2(T + 2)^{3/2}} \leq 4D^2 = \frac{8D^2}{\sqrt{t + 2}}
\end{align*}
(43)

where the second inequality is due to (42), and the first equality is due to (36) and $\eta = \frac{D}{\sqrt{2G(T + 2)^{3/4}}}$.

Then, for any $t = 3, \ldots, T + 1$, by defining $\sigma_t' = 2/\sqrt{t + 1}$ and assuming $h_{t-1} \leq \frac{8D^2}{\sqrt{t + 1}}$, we have
\begin{align*}
h_t &\leq h_t(y_{t-1}) + \langle \nabla F_{t-1}(y_{t-1}), \sigma_{t-1}'(v_{t-1} - y_{t-1}) \rangle + (\sigma_{t-1}')^2\|v_{t-1} - y_{t-1}\|^2 \\
&\leq h_t(y_{t-1}) + \langle \nabla F_{t-1}(y_{t-1}), \sigma_{t-1}'(y_t^* - y_{t-1}) \rangle + (\sigma_{t-1}')^2\|v_{t-1} - y_{t-1}\|^2 \\
&\leq (1 - \sigma_{t-1}')h_t(y_{t-1}) + (\sigma_{t-1}')^2\|v_{t-1} - y_{t-1}\|^2 \\
&\leq (1 - \sigma_{t-1}')h_t(y_{t-1}) + \eta G \sqrt{h_{t-1}} + \eta^2 G^2 + (\sigma_{t-1}')^2D^2 \\
&\leq (1 - \sigma_{t-1}')h_t(y_{t-1}) + \eta G \sqrt{h_{t-1}} + \eta^2 G^2 + (\sigma_{t-1}')^2D^2 \\
&\leq \left(1 - \frac{2}{\sqrt{t + 1}} \right) \frac{8D^2}{\sqrt{t + 1}} + \frac{2D^2}{(T + 2)^{3/4}(t + 1)^{1/4}} + \frac{D^2}{2(T + 2)^{3/2}} + \frac{4D^2}{t + 1} \\
&\leq \left(1 - \frac{2}{\sqrt{t + 1}} \right) \frac{8D^2}{\sqrt{t + 1}} + \frac{2D^2}{t + 1} + \frac{D^2}{2(t + 1)} + \frac{4D^2}{t + 1} \\
&\leq \left(1 - \frac{2}{\sqrt{t + 1}} \right) \frac{8D^2}{\sqrt{t + 1}} + \frac{8D^2}{t + 1} \\
&= \left(1 - \frac{1}{\sqrt{t + 1}} \right) \frac{8D^2}{\sqrt{t + 1}} \leq \frac{8D^2}{\sqrt{t + 2}}
\end{align*}
(44)

where the first inequality is due to (41) and (42), the second inequality is due to $v_{t-1} \in \arg\min_{y \in K} \langle \nabla F_{t-1}(y_{t-1}), y \rangle$, the third inequality is due to the convexity of $F_{t-1}(y)$, the fourth inequality is due to (40), and the last inequality is due to
\begin{equation}
\left(1 - \frac{1}{\sqrt{t + 1}} \right) \frac{1}{\sqrt{t + 1}} \leq \frac{1}{\sqrt{t + 2}}
\end{equation}
(45)

for any $t \geq 0$.

Note that (45) can be derived by dividing $(t + 1)^{3/2}$ into both sides of the following inequality
\[\sqrt{t + 2} \sqrt{t + 1} - \sqrt{t + 2} \leq (\sqrt{t + 1} + 1) \sqrt{t + 1} - \sqrt{t + 2} \leq t + 1 + \sqrt{t + 1} - \sqrt{t + 2} \leq t + 1.\]

By combining (36), (43), and (44), we complete this proof.

C Proof of Lemma 3

In the beginning, we define $y_t^* = \arg\min_{y \in K} F_t(y)$ for any $t \in [T + 1]$, where $F_t(y) = \eta \sum_{i=1}^t \langle g_{t,i}, y \rangle + \|y - y_1\|^2$.

Then, it is easy to verify that
\begin{equation}
\sum_{t=1}^T \langle g_{t,i}, y_t - x^* \rangle = \sum_{t=1}^T \langle g_{t,i}, y_t - y_t^* \rangle + \sum_{t=1}^T \langle g_{t,i}, y_t^* - x^* \rangle.
\end{equation}
(46)
Therefore, we will continue to upper bound the right side of (46). By applying Lemma 2, we have
\[
\sum_{t=1}^{T} \langle \mathbf{g}_c, \mathbf{y}_t - \mathbf{y}_t^* \rangle \leq \sum_{t=1}^{T} \| \mathbf{g}_c \|_2 \| \mathbf{y}_t - \mathbf{y}_t^* \|_2 \leq \sum_{t=1}^{T} G \sqrt{F_{t-1}(\mathbf{y}_t) - F_{t-1}(\mathbf{y}_t^*)} \\
\leq \sum_{t=1}^{T} \frac{2\sqrt{2GD}}{(t+2)^{1/4}} \leq \frac{8\sqrt{2GD(T+2)^{3/4}}}{3}
\]
where the second inequality is due to (21) and Assumption 1, and the last inequality is due to \(\sum_{t=1}^{T} (t+2)^{-1/4} \leq 4(T+2)^{3/4}/3\).

Then, to bound \(\sum_{t=1}^{T} \langle \mathbf{g}_c, \mathbf{y}_t^* - \mathbf{x}^* \rangle\), we introduce the following lemma.

Lemma 9 *(Lemma 6.6 of Garber and Hazan [2016])* Let \(\{f_t(\mathbf{y})\}_{t=1}^{T} \) be a sequence of loss functions and let \(\mathbf{y}_t^* \in \text{argmin}_{\mathbf{y} \in K} \sum_{t=1}^{T} f_t(\mathbf{y}) \) for any \(t \in [T]\). Then, it holds that
\[
\sum_{t=1}^{T} f_t(\mathbf{y}_t^*) - \min_{\mathbf{y} \in K} \sum_{t=1}^{T} f_t(\mathbf{y}) \leq 0.
\]

To apply Lemma 9, we define \(\tilde{f}_t(\mathbf{y}) = \eta \langle \mathbf{g}_c, \mathbf{y} \rangle + \| \mathbf{y} - \mathbf{y}_t \|_2^2\) and \(\tilde{f}_t(\mathbf{y}) = \eta \langle \mathbf{g}_c, \mathbf{y} \rangle\) for any \(t \geq 2\). Note that \(F_t(\mathbf{y}) = \sum_{t=1}^{T} \tilde{f}_t(\mathbf{y})\) and \(\mathbf{y}_{t+1}^* = \text{argmin}_{\mathbf{y} \in K} F_t(\mathbf{y})\) for any \(t = 1, \ldots, T\). Then, by applying Lemma 9 to \(\{f_t(\mathbf{y})\}_{t=1}^{T}\), we have
\[
\sum_{t=1}^{T} \tilde{f}_t(\mathbf{y}_{t+1}^*) - \sum_{t=1}^{T} \tilde{f}_t(\mathbf{x}^*) \leq 0
\]
which implies that
\[
\eta \sum_{t=1}^{T} \langle \mathbf{g}_c, \mathbf{y}_{t+1}^* - \mathbf{x}^* \rangle \leq \| \mathbf{x}^* - \mathbf{y}_1 \|_2^2 - \| \mathbf{y}_2^* - \mathbf{y}_1 \|_2^2.
\]

According to Assumption 2, we have
\[
\sum_{t=1}^{T} \langle \mathbf{g}_c, \mathbf{y}_{t+1}^* - \mathbf{x}^* \rangle \leq \frac{1}{\eta} \| \mathbf{x}^* - \mathbf{y}_1 \|_2^2 \leq \frac{D^2}{\eta}.
\]

Then, we have
\[
\sum_{t=1}^{T} \langle \mathbf{g}_c, \mathbf{y}_t^* - \mathbf{x}^* \rangle = \sum_{t=1}^{T} \langle \mathbf{g}_c, \mathbf{y}_{t+1}^* - \mathbf{x}^* \rangle + \sum_{t=1}^{T} \langle \mathbf{g}_c, \mathbf{y}_t^* - \mathbf{y}_{t+1}^* \rangle \\
\leq \frac{D^2}{\eta} + \sum_{t=1}^{T} \| \mathbf{g}_c \|_2 \| \mathbf{y}_t^* - \mathbf{y}_{t+1}^* \|_2 \\
\leq \frac{D^2}{\eta} + \eta TG^2 \\
\leq \sqrt{2GD(T+2)^{3/4}} + \frac{GDT^{1/4}}{\sqrt{2}}
\]
where the second inequality is due to (39) and Assumption 1, and the last inequality is due to \(\eta = \frac{D}{\sqrt{2GD(T+2)^{3/4}}}\).

By substituting (47) and (48) into (46), we complete the proof.

D Proof of Lemma 4

We first consider the term \(E = \sum_{t=1}^{T} \frac{3\beta D}{2} \| \mathbf{y}_t - \mathbf{y}_{t+1} \|_2\). If \(T \leq 2d\), it is easy to verify that
\[
E = \sum_{t=1}^{T} \frac{3\beta D}{2} \| \mathbf{y}_t - \mathbf{y}_{t+1} \|_2 \leq \frac{3\beta TD^2}{2} \leq 3\beta dD^2
\]
where the first inequality is due to Assumption 2.

Then, if $T > 2d$, we have

$$
E = \frac{3\beta D}{2} \sum_{t=1}^{2d} \|y_t - y_{\tau_t}\|_2 + \frac{3\beta D}{2} \sum_{t=2d+1}^{T} \|y_t - y_{\tau_t}\|_2
\leq 3\beta d^2 + \frac{3\beta D}{2} \sum_{t=2d+1}^{T} (\|y_t - y_t^*\|_2 + \|y_t^* - y_{\tau_t}\|_2 + \|y_{\tau_t} - y_{\tau_t}\|_2)
$$

(50)

Because $F_{t-1}(y)$ is $(t-1)\beta$-strongly convex for any $t = 2, \ldots, T+1$, we have

$$
\|y_t - y_t^*\|_2 \leq \sqrt{\frac{2(F_{t-1}(y_t) - F_{t-1}(y_t^*))}{(t-1)\beta}} \leq \sqrt{\frac{2\gamma}{(t-1)^{1-\alpha} \beta}}
$$

(51)

where the first inequality is due to (21) and the second inequality is due to $F_{t-1}(y_t) - F_{t-1}(y_t^*) \leq \gamma(t-1)^\alpha$.

Before considering $\|y_t^* - y_{\tau_t}\|_2$, we define $\bar{f}_t(y) = \langle g_c, y \rangle + \frac{\beta}{2} \|y - y_t\|^2_2$ for any $t = 1, \ldots, T$. Note that $F_t(y) = \sum_{i=1}^{t} \bar{f}_i(y)$. Moreover, for any $x, y \in K$ and $t = 1, \ldots, T$, we have

$$
|\bar{f}_t(x) - \bar{f}_t(y)| = |\langle g_c, x - y \rangle + \frac{\beta}{2} \|x - y_t\|^2_2 - \frac{\beta}{2} \|y - y_t\|^2_2|
\leq \|g_c\|_2 \|x - y\|_2 + \frac{\beta}{2} (\|x - y_t\|_2 + \|y - y_t\|_2) \|x - y\|_2
\leq (G + \beta D) \|x - y\|_2
$$

(52)

where the last inequality is due to Assumptions 1 and 2.

Because of (21), for any $i \geq j > 1$, we have

$$
\|y_j^* - y_i^*\|_2^2 \leq \frac{2(F_{j-1}(y_j^*) - F_{i-1}(y_i^*))}{(i-1)\beta}
\leq \frac{2(F_j(y_j^*) - F_{j-1}(y_j^*)) + 2 \sum_{k=j}^{i-1} (\bar{f}_k(y_j^*) - \bar{f}_k(y_i^*))}{(i-1)\beta}
\leq \frac{2(j-1)(G + \beta D) \|y_j^* - y_{\tau_t}\|_2}{(i-1)\beta}
$$

(53)

where the last inequality is due to $y_j^* = \arg\min_{y \in K} F_{j-1}(y)$ and (52).

Note that all gradients queried at rounds $1, \ldots, t - d$ must arrive before round t. Therefore, for any $t \geq 2d+1$, we have $\tau_t = 1 + \sum_{k=1}^{t-1} |F_k| \geq t - d + 1 > t - d$ and

$$
\|y_{\tau_t}^* - y_{\tau_t}\|_2 \leq \frac{2(t - \tau_t)(G + \beta D)}{(t-1)\beta} \leq \frac{2d(G + \beta D)}{(t-1)\beta}
$$

(54)

where the first inequality is due to $t \geq \tau_t > 1$ and (53).

By combining (50) with (51) and (54), if $T > 2d$, we have

$$
E \leq 3\beta d^2 + 3\beta D \sum_{t=2d+1}^{T} \left(\sqrt{\frac{2\gamma}{(t-1)^{1-\alpha} \beta}} + \frac{2d(G + \beta D)}{(t-1)\beta} + \sqrt{\frac{2\gamma}{(t-1)^{1-\alpha} \beta}} \right)
\leq 3\beta d^2 + 3\beta D \sum_{t=2d+1}^{T} \sqrt{\frac{2\gamma}{(t-1)^{1-\alpha} \beta}} + 3D(G + \beta D)d \sum_{t=2}^{T} \frac{1}{t}
\leq 3\beta d^2 + 3\beta D \sum_{t=2d+1}^{T} \sqrt{\frac{2\gamma}{(t-1)^{1-\alpha} \beta}} + 3D(G + \beta D)d \ln T
\leq 3\beta d^2 + 3D \sqrt{2\beta \gamma} + \frac{6D \sqrt{2\beta \gamma}}{1 + \alpha} \cdot T^{(1+\alpha)/2} + 3D(G + \beta D)d \ln T
$$

19
where the second inequality is due to $$(\tau_1 - 1)^{1-\alpha} \leq (t - 1)^{1-\alpha}$$ for $t \geq \tau_1 > 1$ and $\alpha < 1$, and the last inequality is due to Lemma 7 and $0 < 1 - \alpha \leq 1$.

By combining (49) with the above inequality, we have

$$E \leq 3\beta d^2 + 3dD\sqrt{2\beta} + \frac{6D\sqrt{2\beta}}{1+\alpha} t^{(1+\alpha)/2} + 3D(G + \beta D) d\ln T.$$

Then, we proceed to bound the term $C = \sum_{t=s+1}^{T+d-1} \sum_{i=\tau_i}^{\tau_i+1} G\|y_{\tau_i} - y_i\|_2$. Similar to (31), we first have

$$C \leq |F_s|GD + \sum_{t=s+1}^{T+d-1} \sum_{i=\tau_i}^{\tau_i+1} G(\|y_{\tau_i} - y_{\tau_i}^*\|_2 + \|y_{\tau_i}^* - y_i^*\|_2 + \|y_i^* - y_i\|_2). \quad (55)$$

By combining (55) with $|F_s| \leq d$, (51), and (53), we have

$$C \leq dGD + \sum_{t=s+1}^{T+d-1} \sum_{i=\tau_i}^{\tau_i+1} G \left(\frac{2\gamma}{(\tau_i - 1)^{1-\alpha} \beta} + \frac{2(i - \tau_i)(G + \beta D)}{(i - 1)\beta} \right) \quad (56)$$

where the first inequality is due to $$(\tau_i - 1)^{1-\alpha} \leq (i - 1)^{1-\alpha}$$ for $0 < \tau_i - 1 \leq i - 1$ and $\alpha < 1$, and the last inequality is due to Lemma 8, $0 < 1 - \alpha \leq 1$, and $i - \tau_i \leq \tau_i+1 - i - \tau_i \leq |F_i| \leq d$.

Recall that we have defined

$$I_t = \begin{cases} \emptyset, & \text{if } |F_t| = 0, \\ \{\tau_i, \tau_i + 1, \ldots, \tau_i+1 - 1\}, & \text{otherwise.} \end{cases}$$

It is not hard to verify that

$$\bigcup_{t=s+1}^{T+d-1} I_t = \{ |F_s| + 1, \ldots, T \}, I_i \cap I_j = \emptyset, \forall i \neq j. \quad (57)$$

By combining (57) with (56), we have

$$C \leq dGD + 2dG \sqrt{\frac{2\gamma}{\beta}} + \sqrt{\frac{2\gamma}{\beta} \frac{4G}{1+\alpha}} T^{(1+\alpha)/2} + \sum_{t=|F_t|+1}^{T} 2dG(G + \beta D) \frac{1}{(t - 1)\beta} \quad (58)$$

Next, we proceed to bound the term $A = \sum_{t=1}^{T} G(\|y_{\tau_t} - y_{\tau_t}^*\|_2 + \|y_{\tau_t}^* - y_{\tau_t'}\|_2 + \|y_{\tau_t'} - y_{\tau_t'}\|_2)$. Similar to (23), if $T > 2d$, we have

$$A \leq 2dGD + \sum_{t=2d+1}^{T} G(\|y_{\tau_t} - y_{\tau_t}^*\|_2 + \|y_{\tau_t}^* - y_{\tau_t'}\|_2 + \|y_{\tau_t'} - y_{\tau_t'}\|_2) \quad (59)$$

where the second inequality is due to (51) and (53), and the last inequality is due to $\tau_t' \geq \tau_t > 1$ and $\frac{\tau_t - \tau_t'}{\tau_t - 1} \leq \sum_{k=1}^{\tau_t'} |F_k| \frac{1}{\sum_{k=1}^{\tau_t} |F_k|}$. Then, we introduce the following lemma.
Lemma 10 Let $h_k = \sum_{i=1}^k |\mathcal{F}_i|$. If $T > 2d$, we have

$$
\sum_{t=2d+1}^T \sum_{k=t}^{t-1} |\mathcal{F}_k| h_k \leq d + d \ln T.
$$

By applying Lemmas 7 and 10 to (59) and combining with (22), we have

$$
A \leq 2dG^2 + 2dG \sqrt{\frac{2\gamma}{\beta}} + \sqrt{\frac{2\gamma}{\beta}} \frac{4G}{1+\alpha} T^{(1+\alpha)/2} + \frac{2G(G + \beta D)(1 + \ln T)}{\beta}. \tag{60}
$$

Finally, by combining (58) and (60), we complete this proof.

E Proof of Lemmas 5 and 6

Recall that $F_t(y)$ defined in Algorithm 2 is equivalent to that defined in (12). Let $\tilde{f}_t(y) = \langle g_{c_1}, y \rangle + \frac{\beta}{2} \|y - y_t\|^2_2$ for any $t = 1, \ldots, T$, which is β-strongly convex. Moreover, as proved in (52), functions $\tilde{f}_t(y), \ldots, \tilde{f}_T(y)$ are $(G + \beta D)$-Lipschitz over \mathcal{K} (see the definition of Lipschitz functions in Hazan [2016]). Then, because of $\nabla \tilde{f}_t(y^*_t) = g_{c_1}$, it is not hard to verify that decisions y_1, \ldots, y_{T+1} in our Algorithm 2 are actually generated by performing OFW for strongly convex losses (see Algorithm 2 in Wan and Zhang [2021] for details) on functions $\tilde{f}_1(y), \ldots, \tilde{f}_T(y)$. Note that when Assumption 2 holds, and functions $\tilde{f}_1(y), \ldots, \tilde{f}_T(y)$ are β-strongly convex and G'-Lipschitz, Lemma 6 of Wan and Zhang [2021] has already shown that

$$
F_{t-1}(y_t) - F_{t-1}(y_t^*) \leq \frac{16(G' + \beta D)^2(t - 1)^{1/3}}{\beta}
$$

for any $t = 2, \ldots, T+1$. Therefore, our Lemma 5 can be derived by simply substituting $G' = G + \beta D$ into the above inequality.

Moreover, when Assumption 2 holds, and functions $\tilde{f}_1(y), \ldots, \tilde{f}_T(y)$ are β-strongly convex and G'-Lipschitz, Theorem 3 of Wan and Zhang [2021] has already shown that

$$
\sum_{t=1}^T \tilde{f}_t(y_t) - \sum_{t=1}^T \tilde{f}_t(x^*) \leq \frac{6\sqrt{2}(G' + \beta D)^2T^{2/3}}{\beta} + \frac{2(G' + \beta D)^2 \ln T}{\beta} + G'D.
$$

We notice that $\sum_{t=1}^T (\langle g_{c_1}, y_t - x^* \rangle - \frac{\beta}{2} \|y_t - x^*\|^2_2) = \sum_{t=1}^T \tilde{f}_t(y_t) - \sum_{t=1}^T \tilde{f}_t(x^*)$. Therefore, our Lemma 6 can be derived by simply substituting $G' = G + \beta D$ into the above inequality.

F Proof of Lemma 7

Since the gradient g_1 must arrive before round $d + 1$, for any $T \geq t \geq 2d + 1$, it is easy to verify that $\tau_1 = 1 + \sum_{i=1}^t |\mathcal{F}_i| \geq 1 + \sum_{i=1}^{d+1} |\mathcal{F}_i| \geq 2$. Moreover, for any $i \geq 2$ and $(i+1)d \geq T \geq id + 1$, since all gradients queried at rounds $1, \ldots, (i-1)d + 1$ must arrive before round $id + 1$, we have

$$
\tau_i = 1 + \sum_{i=1}^{t-1} |\mathcal{F}_i| \geq (i-1)d + 2. \tag{61}
$$

Then, we have

$$
\sum_{t=2d+1}^T (\tau_t - 1)^{-\alpha/2} = \sum_{t=2d+1}^{[T/d]d} (\tau_t - 1)^{-\alpha/2} + \sum_{t=|[T/d]d+1}^T (\tau_t - 1)^{-\alpha/2}
\leq \sum_{i=2}^{[T/d]d-1} \sum_{t=2i+1}^{(i+1)d} (\tau_t - 1)^{-\alpha/2} + d + \sum_{i=2}^{[T/d]d-1} d((i-1)d + 1)^{-\alpha/2}
\leq d + \sum_{i=2}^{[T/d]d-1} d^{1-\alpha/2} (i - 1)^{-\alpha/2} \leq d + \sum_{i=1}^{[T/d]d} d^{1-\alpha/2} i^{-\alpha/2}
\leq d + \frac{2}{2-\alpha} d^{1-\alpha/2} ([T/d])^{1-\alpha/2} \leq d + \frac{2}{2-\alpha} T^{1-\alpha/2}
$$
where the first inequality is due to \((\tau_t - 1)^{-\alpha/2} \leq 1\) for \(\alpha > 0\) and \(\tau_t \geq 2\), and the second inequality is due to (61) and \(\alpha > 0\).

G Proof of Lemma 8

Because of \(\tau_t = 1 + \sum_{i=1}^{t-1} |F_i|\), we have

\[
\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_t}^{t-1} (\tau_t - 1)^{-\alpha/2} = \sum_{t=s+1}^{T+d-1} |F_t| = \sum_{t=s+1}^{T+d-1} \left(\sum_{i=s}^{t-1} \frac{|F_i|}{\alpha/2}\right) \leq \sum_{t=s+1}^{T+d-1} \left(\sum_{i=s}^{t-1} |F_i|\right)^{\alpha/2} + \sum_{i=s}^{t-1} |F_i| \left(\frac{1}{\left(\sum_{i=s}^{t-1} |F_i|\right)^{\alpha/2}} - \frac{1}{\left(\sum_{i=s}^{t} |F_i|\right)^{\alpha/2}}\right)
\]

(62)

where the first inequality is due to (32) and \((\sum_{i=s}^{t} |F_i|)^{\alpha/2} \leq \left(\sum_{i=s}^{t-1} |F_i|\right)^{\alpha/2}\).

Let \(h_t = \sum_{i=s}^{t} |F_i|\) for any \(t = s, \ldots, T + d - 1\). Since \(0 < \alpha \leq 1\), it is not hard to verify that

\[
\sum_{t=s+1}^{T+d-1} \frac{|F_t|}{\alpha/2} = \sum_{t=s+1}^{T+d-1} \frac{|F_t|}{\alpha/2} = \sum_{t=s+1}^{T+d-1} h_t \int_{h_{t-1}}^{h_t} \frac{1}{x^{\alpha/2}} dx \leq \sum_{t=s+1}^{T+d-1} h_t \int_{h_{t-1}}^{h_t} \frac{1}{x^{\alpha/2}} dx = \int_{h_s}^{h_{T+d-1}} \frac{1}{x^{\alpha/2}} dx = \int_{h_s}^{T} \frac{1}{x^{\alpha/2}} dx \leq \frac{2}{\alpha} T^{1-\alpha/2}.
\]

Finally, we complete this proof by combining (62) with (63).

H Proof of Lemma 10

It is not hard to verify that

\[
\sum_{t=2d+1}^{T} \sum_{k=t}^{t'-1} \frac{|F_k|}{h_k} \leq \sum_{t=s}^{T+d-1} \sum_{k=t}^{t'-1} \frac{|F_k|}{h_k} \leq \sum_{t=s}^{T+d-1} \sum_{k=t}^{t'-1} \frac{|F_k|}{h_k} = \sum_{k=0}^{d-1} \sum_{t=s+k}^{T+d-1} \frac{|F_t|}{h_t} \leq \sum_{k=0}^{d-1} T^{d-1} \frac{|F_t|}{h_t} = d \sum_{t=s}^{T+d-1} \frac{|F_t|}{h_t}
\]

where the first inequality is due to \(s \leq d < 2d + 1\), and the second inequality is due to \(t' - 1 = t + d_i - 2 < t + d - 1\).

Moreover, we have

\[
\sum_{t=s}^{T+d-1} \frac{|F_t|}{h_t} = \sum_{t=s}^{T+d-1} \frac{|F_t|}{h_t} + \sum_{t=s+1}^{T+d-1} \int_{h_{t-1}}^{h_t} \frac{1}{h_t} dx \leq \sum_{t=s}^{T+d-1} \frac{|F_t|}{h_t} + \sum_{t=s+1}^{T+d-1} \int_{h_{t-1}}^{h_t} \frac{1}{x} dx = 1 + \ln T + \ln T \leq 1 + \ln T
\]

where the last equality is due to \(h_s = |F_s|\) and \(h_{T+d-1} = T\).

Finally, we complete this proof by combining the above two inequalities.